CNS Penetration of Intrathecal-Lumbar Idursulfase in the Monkey, Dog and Mouse: Implications for Neurological Outcomes of Lysosomal Storage Disorder

Shire Human Genetic Therapies, Inc., Lexington, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.23). 01/2012; 7(1):e30341. DOI: 10.1371/journal.pone.0030341
Source: PubMed


A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals.

1 Follower
72 Reads
  • Source
    • "Evidence from several animal LSD models with CNS manifestations suggests treatments that raise levels of lysosomal enzymes in CSF have a potential for clinical use91011. For example, intracerebroventricular administration of hASA to MLD model mice using osmotic minipumps improved motor function and reduced sulfatide accumulation in the CNS, but did not elicit detectable anti-hASA antibodies during the 4 weeks of treatment10. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.
    Scientific Reports 07/2014; 4(5506). DOI:10.1038/srep05506 · 5.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing therapies for the brain is perhaps the greatest challenge facing modern medicine today. While a great many potential therapies show promise in animal models, precious few make it to approval or are even studied in human patients. The particular challenges to the translation of neurotherapeutics to the clinic are many, but a major barrier is difficulty in delivering therapeutics into the brain. The goal of this workshop was to present ways to deliver therapeutics to the brain, including the limitations of each method, and describe ways to track their delivery, safety, and efficacy. Solving the problem of delivery will aid translation of therapeutics for patients suffering from neurodegeneration and other disorders of the brain.
    Drug Delivery and Translational Research 06/2012; 2(3). DOI:10.1007/s13346-012-0068-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysosomal storage disorders (LSDs) are a group of about 50 life-threatening conditions caused by genetic defects affecting lysosomal components. The underscoring molecular deficiency leads to widespread cellular dysfunction through most tissues in the body, including peripheral organs and the central nervous system (CNS). Efforts during the last few decades have rendered a remarkable advance regarding our knowledge, medical awareness, and early detection of these genetic defects, as well as development of several treatment modalities. Clinical and experimental strategies encompassing enzyme replacement, gene and cell therapies, substrate reduction, and chemical chaperones are showing considerable potential in attenuating the peripheral pathology. However, a major drawback has been encountered regarding the suboptimal impact of these approaches on the CNS pathology. Particular anatomical and biochemical constraints of this tissue pose a major obstacle to the delivery of therapeutics into the CNS. Approaches to overcome these obstacles include modalities of local administration, strategies to enhance the blood-CNS permeability, intranasal delivery, use of exosomes, and those exploiting targeting of transporters and transcytosis pathways in the endothelial lining. The later two approaches are being pursued at the time by coupling therapeutic agents to affinity moieties and drug delivery systems capable of targeting these natural transport routes. This approach is particularly promising, as using paths naturally active at this interface may render safe and effective delivery of LSD therapies into the CNS.
    Drug Delivery and Translational Research 06/2012; 2(3). DOI:10.1007/s13346-012-0072-4
Show more