Article

Cidea promotes hepatic steatosis by sensing dietary fatty acids

Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Hepatology (Impact Factor: 11.19). 01/2012; 56(1):95-107. DOI: 10.1002/hep.25611
Source: PubMed

ABSTRACT High levels of dietary saturated fat have been closely associated with the development of hepatic steatosis, but the factors that mediate this process remain elusive. Here, we observed that the level of cell death-inducing DNA fragmentation factor-alpha-like effector a (Cidea) expression was highly correlated with the severity of hepatic steatosis in humans. Overexpression of Cidea in mouse liver resulted in increased hepatic lipid accumulation and the formation of large lipid droplets (LDs). In contrast, mice with a Cidea deficiency had decreased lipid accumulation and alleviated hepatic steatosis when they received a high-fat-diet feeding or in ob/ob mice. Furthermore, the knockdown of Cidea in livers of ob/ob mice resulted in significantly reduced hepatic lipid accumulation and smaller LDs. Importantly, we observed that Cidea expression in hepatocytes was specifically induced by saturated fatty acids (FAs), and such induction was reduced when sterol response element-binding protein (SREBP)1c was knocked down. In contrast, the overexpression of SREBP1c restored the saturated FA-induced expression of Cidea. In addition, we observed that the stability of Cidea protein in hepatocytes increased significantly in response to treatment with FAs. CONCLUSION: Cidea plays critical roles in promoting hepatic lipid accumulation and in the development of hepatic steatosis by acting as a sensor that responds to diets that contain FAs.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated.
    Nature Communications 01/2015; 6:5949. DOI:10.1038/ncomms6949 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The flavonoid luteolin has various pharmacological activities. However, only few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between liver and adipose tissue in diet-induced obese mice. C57BL/6J mice were fed a normal, high-fat, and high-fat + 0.005% (w/w) luteolin diet for 16 weeks. In high-fat-fed mice, luteolin improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption. In adipose tissue, luteolin increased PPARγ protein expression to attenuate hepatic lipotoxicity, which may be linked to the improvement circulating fatty acid levels by enhancing fatty acid uptake genes and lipogenic genes and proteins in adipose tissue. Interestingly, luteolin also up-regulated the expression of genes controlling lipolysis and the tricarboxylic acid (TCA) cycle prior to LD formation, thereby reducing adiposity. Moreover, luteolin improved hepatic insulin sensitivity by suppressing SREBP1 expression that modulates Irs2 expression through its negative feedback and gluconeogenesis. Luteolin ameliorates the deleterious effects of diet-induced obesity and its comorbidity via the interplay between liver and adipose tissue. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
    Diabetes 12/2014; DOI:10.2337/db14-0631 · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides (TG), and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet (HFD) feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity was increased, and basal lipolytic activities significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT, led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in HFD-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 12/2014; DOI:10.1074/jbc.M114.605980 · 4.60 Impact Factor

Full-text

Download
60 Downloads
Available from
May 23, 2014