Article

Cidea promotes hepatic steatosis by sensing dietary fatty acids.

Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Hepatology (Impact Factor: 11.19). 01/2012; 56(1):95-107. DOI: 10.1002/hep.25611
Source: PubMed

ABSTRACT High levels of dietary saturated fat have been closely associated with the development of hepatic steatosis, but the factors that mediate this process remain elusive. Here, we observed that the level of cell death-inducing DNA fragmentation factor-alpha-like effector a (Cidea) expression was highly correlated with the severity of hepatic steatosis in humans. Overexpression of Cidea in mouse liver resulted in increased hepatic lipid accumulation and the formation of large lipid droplets (LDs). In contrast, mice with a Cidea deficiency had decreased lipid accumulation and alleviated hepatic steatosis when they received a high-fat-diet feeding or in ob/ob mice. Furthermore, the knockdown of Cidea in livers of ob/ob mice resulted in significantly reduced hepatic lipid accumulation and smaller LDs. Importantly, we observed that Cidea expression in hepatocytes was specifically induced by saturated fatty acids (FAs), and such induction was reduced when sterol response element-binding protein (SREBP)1c was knocked down. In contrast, the overexpression of SREBP1c restored the saturated FA-induced expression of Cidea. In addition, we observed that the stability of Cidea protein in hepatocytes increased significantly in response to treatment with FAs. CONCLUSION: Cidea plays critical roles in promoting hepatic lipid accumulation and in the development of hepatic steatosis by acting as a sensor that responds to diets that contain FAs.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell death-inducing DFF45-like effector B (CIDEB) is an apoptotic host factor, which was recently found to also regulate hepatic lipid homeostasis. Herein we delineate the relevance of these dual roles of CIDEB in apoptosis and lipid metabolism in the context of the hepatitis C virus (HCV) replication. We demonstrate that HCV up-regulates CIDEB expression in human serum (HS) differentiated hepatoma cells. CIDEB overexpression inhibits HCV replication in HCV replicon expressing Huh7.5 cells, while siRNA knockdown of CIDEB expression in HS differentiated hepatoma cells promotes HCV replication and secretion of viral proteins. Furthermore, we characterize a CIDEB mutant, KRRA, which is deficient in lipid droplet (LD) clustering and fusion and demonstrate that CIDEB-mediated inhibition of HCV is independent of the protein's LD fusogenic role. Our results suggest that higher levels of CIDEB expression, which favour an apoptotic role for the host factor, inhibit HCV. Collectively, our data demonstrate that CIDEB can act as an anti-HCV host factor, and contribute to altered triglyceride homeostasis. This article is protected by copyright. All rights reserved.
    FEBS Journal 06/2014; · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipolysis is the process by which triglycerides are hydrolyzed to free fatty acids (FFA) and glycerol. In adipocytes, this is achieved by the sequential action of Adipose Triglyceride Lipase (ATGL), Hormone Sensitive Lipase (HSL) and Monoglyceride Lipase (MGL). The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue. This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. Since the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of adipose tissue lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL and the intracellular and extracellular signals affecting their activity.
    Journal of Molecular Endocrinology 02/2014; · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The flavonoid luteolin has various pharmacological activities. However, only few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between liver and adipose tissue in diet-induced obese mice. C57BL/6J mice were fed a normal, high-fat, and high-fat + 0.005% (w/w) luteolin diet for 16 weeks. In high-fat-fed mice, luteolin improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption. In adipose tissue, luteolin increased PPARγ protein expression to attenuate hepatic lipotoxicity, which may be linked to the improvement circulating fatty acid levels by enhancing fatty acid uptake genes and lipogenic genes and proteins in adipose tissue. Interestingly, luteolin also up-regulated the expression of genes controlling lipolysis and the tricarboxylic acid (TCA) cycle prior to LD formation, thereby reducing adiposity. Moreover, luteolin improved hepatic insulin sensitivity by suppressing SREBP1 expression that modulates Irs2 expression through its negative feedback and gluconeogenesis. Luteolin ameliorates the deleterious effects of diet-induced obesity and its comorbidity via the interplay between liver and adipose tissue. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
    Diabetes 12/2014; · 7.90 Impact Factor

Full-text

Download
51 Downloads
Available from
May 23, 2014