Article

Latent Kaposi's sarcoma-associated herpesvirus infection of monocytes downregulates expression of adaptive immune response costimulatory receptors and proinflammatory cytokines.

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Journal of Virology (Impact Factor: 4.65). 01/2012; 86(7):3916-23. DOI: 10.1128/JVI.06437-11
Source: PubMed

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) infection is associated with the development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. We report the establishment of a monocytic cell line latently infected with KSHV (KSHV-THP-1). We profiled viral and cytokine gene expression in the KSHV-THP-1 cells compared to that in uninfected THP-1 cells and found that several genes involved in the host immune response were downregulated during latent infection, including genes for CD80, CD86, and the cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Thus, KSHV minimizes its immunological signature by suppressing key immune response factors, enabling persistent infection and evasion from host detection.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.
    Frontiers in Microbiology 09/2014; 5:504. DOI:10.3389/fmicb.2014.00504 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins. The inflammasome refers to a protein complex that functions as an activation platform for the cysteine protease caspase-1, which then processes inflammatory molecules such as IL-1β and IL-18 into functional forms. Assembly of this complex is triggered following receptor-mediated detection of pathogen-associated molecules. Receptors have been identified that are essential to inflammasome activation in response to numerous molecular patterns including virus-associated molecules such as DNA. In fact, the importance of cytoplasmic DNA as an immune stimulus is exemplified by the existence of at least nine distinct cellular receptors capable of initiating innate reactivity in response to this molecule. Viruses that employ DNA as genomic material include herpesviruses, poxviruses and adenoviruses. Each has been described as capable of inducing inflammasome-mediated activity. Interestingly, however, the cellular molecules responsible for these responses appear to vary according to host species, cell type and even viral strain. Secretion of IL-1β and IL-18 are important components of antimicrobial immunity and, as a result, pathogens have evolved factors to evade or counteract this response. This includes DNA-based viruses, many of which encode multiple redundant counteractive molecules. However, it is clear that such phenotypes are only beginning to be uncovered. The purpose of this review is to describe what is known regarding the activation of inflammasome-mediated processes in response to infection with well-examined families of DNA viruses and to discuss characterized mechanisms of manipulation and neutralization of inflammasome-dependent activity. This review aims to shed light on the biologically important phenomena regarding this virus-host interaction and to highlight key areas where important information is lacking.
    Future Virology 04/2013; 8(4):357-370. DOI:10.2217/fvl.13.22 · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) is an oncogenic gammaherpesvirus that primarily infects cells of the immune and vascular systems. HHV-8 interacts with and targets professional antigen presenting cells and influences their function. Infection alters the maturation, antigen presentation, and immune activation capabilities of certain dendritic cells (DC) despite non-robust lytic replication in these cells. DC sustains a low level of antiviral functionality during HHV-8 infection in vitro. This may explain the ability of healthy individuals to effectively control this virus without disease. Following an immune compromising event, such as organ transplantation or human immunodeficiency virus type 1 infection, a reduced cellular antiviral response against HHV-8 compounded with skewed DC cytokine production and antigen presentation likely contributes to the development of HHV-8 associated diseases, i.e., Kaposi's sarcoma and certain B cell lymphomas. In this review we focus on the role of DC in the establishment of HHV-8 primary and latent infection, the functional state of DC during HHV-8 infection, and the current understanding of the factors influencing virus-DC interactions in the context of HHV-8-associated disease.
    Frontiers in Microbiology 08/2014; 5:452. DOI:10.3389/fmicb.2014.00452 · 3.94 Impact Factor

Full-text (2 Sources)

Download
30 Downloads
Available from
Jun 1, 2014