Article

Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser.

Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
Nature (Impact Factor: 38.6). 02/2012; 482(7383):59-62. DOI: 10.1038/nature10746
Source: PubMed

ABSTRACT Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>10(17) watts per cm(2), previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 10(6) kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray-matter interactions, and illustrate the importance of electron-ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.

2 Bookmarks
 · 
156 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.
    Nature Communications 12/2013; 4:2919. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 μm was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 μm. The entire probe setup had a spectral resolution of ∼1.5 eV, a detection bandwidth of ∼24 eV, and an overall photon throughput efficiency of the order of 10(-5). Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.
    The Review of scientific instruments 12/2013; 84(12):123106. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
    Nature Communications 01/2014; 5:3533. · 10.02 Impact Factor

Full-text

View
39 Downloads
Available from
May 29, 2014