Article

Subjecting elite athletes to inspiratory breathing load reveals behavioral and neural signatures of optimal performers in extreme environments.

Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(1):e29394. DOI: 10.1371/journal.pone.0029394
Source: PubMed

ABSTRACT It is unclear whether and how elite athletes process physiological or psychological challenges differently than healthy comparison subjects. In general, individuals optimize exercise level as it relates to differences between expected and experienced exertion, which can be conceptualized as a body prediction error. The process of computing a body prediction error involves the insular cortex, which is important for interoception, i.e. the sense of the physiological condition of the body. Thus, optimal performance may be related to efficient minimization of the body prediction error. We examined the hypothesis that elite athletes, compared to control subjects, show attenuated insular cortex activation during an aversive interoceptive challenge.
Elite adventure racers (n = 10) and healthy volunteers (n = 11) performed a continuous performance task with varying degrees of a non-hypercapnic breathing load while undergoing functional magnetic resonance imaging. The results indicate that (1) non-hypercapnic inspiratory breathing load is an aversive experience associated with a profound activation of a distributed set of brain areas including bilateral insula, dorsolateral prefrontal cortex and anterior cingulated; (2) adventure racers relative to comparison subjects show greater accuracy on the continuous performance task during the aversive interoceptive condition; and (3) adventure racers show an attenuated right insula cortex response during and following the aversive interoceptive condition of non-hypercapnic inspiratory breathing load.
These findings support the hypothesis that elite athletes during an aversive interoceptive condition show better performance and an attenuated insular cortex activation during the aversive experience. Interestingly, differential modulation of the right insular cortex has been found previously in elite military personnel and appears to be emerging as an important brain system for optimal performance in extreme environments.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: We previously reported that when long-term abstinent alcoholics (LTAA; with no drug comorbidity) are compared to controls, they show increased resting state synchrony (RSS) in the executive control network and reduced RSS in the appetitive drive network suggestive of compensatory mechanisms that may facilitate abstinence. The aim of the present study was to investigate whether long-term abstinent alcoholics with comorbid stimulants dependence (LTAAS) show similar RSS mechanisms. METHODS: Resting-state functional MRI data were collected on 36 LTAAS (20 females, age: 47.85±7.30), 23 LTAA (8 females, age: M=47.91±6.76), and 23 non-substance abusing controls (NSAC; 8 females, age: M=47.99±6.70). Using seed-based measures, we examined RSS with the nucleus accumbens (NAcc) and the subgenual anterior cingulate cortex (sgACC). RESULTS: Results showed commonalities in LTAA and LTAAS RSS (similar enhanced executive control RSS and left insula RSS) as well as differences (no attenuation of appetitive drive RSS in LTAAS and no enhancement of RSS in right insula in LTAA). CONCLUSIONS: We believe these differences are adaptive mechanisms that support abstinence. These findings suggest common as well as specific targets for treatment in chronic alcoholics with vs without comorbid stimulant dependence.
    Drug and alcohol dependence 04/2013; · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyspnea is the highly threatening experience of breathlessness experienced by patients with diverse pathologies, including respiratory, cardiovascular, and neuromuscular diseases, cancer and panic disorder. This debilitating symptom is especially prominent in the elderly and the obese, two growing populations in the Western world. It has further been found that women suffer more strongly from dyspnea than men. Despite optimization of disease-specific treatments, dyspnea is often inadequately treated. The immense burden faced by patients, families and the healthcare system makes improving management of chronic dyspnea a priority. Dyspnea is a multidimensional sensation that encompasses an array of unpleasant respiratory sensations that vary according to underlying cause and patient characteristics. Biopsychological factors beyond disease pathology exacerbate the perception of dyspnea, increase symptom severity and reduce quality of life. Psychological state (especially comorbid anxiety and depression), hormone status, gender, body weight (obesity) and general fitness level are particularly important. Neuroimaging has started to uncover the neural mechanisms involved in the processing of sensory and affective components of dyspnea. Awareness of biopsychological factors beyond pathology is essential for diagnosis and treatment of dyspnea. Increasing understanding the interactions between biopsychological factors and dyspnea perception will enhance the development of symptomatic treatments that specifically address each patient's most pressing needs at a specific stage in life. Future neuroimaging research can provide objective markers to fully understand the role of biopsychological factors in the perception of dyspnea in the hope of uncovering target areas for pharmacologic and non-pharmacologic therapy.
    Maturitas 07/2013; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Problems associated with stimulant use have been linked to frontocingulate, insular, and thalamic dysfunction during decision making and alterations in interoceptive processing. However, little is known about how interoception and decision making interact and contribute to dysfunctions that promote the transition from recreational drug use to abuse or dependence. Here, we investigate brain activation in response to reward, punishment, and uncertainty during an aversive interoceptive challenge in current and former stimulant (cocaine and amphetamine) users using functional magnetic resonance imaging (fMRI). Young adults previously identified as recreational users (n = 184) were followed up 3 years later. Of these, 18 individuals progressed to problem stimulant use (PSU), whereas 15 desisted stimulant use (DSU). PSU, DSU, and 14 healthy comparison subjects (CTL) performed a two-choice prediction task at three fixed error rates (20% = reward, 50% = uncertainty, 80% = punishment) during which they anticipated and experienced episodes of inspiratory breathing load. Although groups did not differ in insula activation or subjective breathing load ratings, PSU exhibited lower right inferior frontal gyrus (IFG) and bilateral anterior cingulate (ACC) activation than DSU and CTL during aversive interoceptive processing as well as lower right IFG in response to decision making involving uncertainty. However, PSU exhibited greater bilateral IFG activation than DSU and CTL while making choices within the context of punishing feedback, and both PSU and DSU showed lower thalamic activation during breathing load than CTL. Findings suggest that frontocingulate attenuation, reflecting reduced resources devoted to goal maintenance and action selection in the presence of uncertainty and interoceptive perturbations, may be a biomarker for susceptibility to PSU.
    Frontiers in Systems Neuroscience 01/2013; 7:89.

Full-text (2 Sources)

View
15 Downloads
Available from
May 16, 2014