Cancer Survivors in the United States: A Review of the Literature and a Call to Action

Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48106, USA.
International journal of medical sciences (Impact Factor: 1.55). 01/2012; 9(2):163-73. DOI: 10.7150/ijms.3827
Source: PubMed

ABSTRACT The number of cancer survivors in the U.S. has increased from 3 million in 1971, when the National Cancer Act was enacted, to over 12 million today. Over 70% of children affected by cancer survive more than 10 years, and most are cured. Most cancer survivors are adults, with two-thirds of them 65 years of age or older and two-thirds alive at five years. The most common cancer diagnoses among survivors include breast, prostate and colorectal cancers. This review was conducted to better appreciate the challenges associated with cancer survivors and the opportunities healthcare providers have in making a difference for these patients.
Comprehensive review of literature based on PubMed searches on topics related to cancer survivorship, and associated physical, cognitive, socio-economic, sexual/behavioral and legal issues.
At least 50% of cancer survivors suffer from late treatment-related side effects, often including physical, psychosocial, cognitive and sexual abnormalities, as well as concerns regarding recurrence and/or the development of new malignancies. Many are chronic in nature and some are severe and even life-threatening. Survivors also face issues involving lack of appropriate health maintenance counseling, increased unemployment rate and workplace discrimination.
Advances in the diagnosis and treatment of cancer will lead to more survivors and better quality of life. However, tools to recognize potentially serious long-lasting side effects of cancer therapy earlier in order to treat and/or prevent them must be developed. It is incumbent upon our health care delivery systems to make meeting these patients' needs a priority.


Available from: Ann M Kujawa, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: This Report intends to estimate the total number of people still alive in 2010 after cancer diagnosis in Italy, regardless of the time since diagnosis, and to project these estimates to 2015. This study is also aimed to estimate the number of already cured cancer patients, whose mortality rates have become undistinguishable from that of the general population of the same age and sex. MATERIALS AND METHODS: The study took advantage of the information from the AIRTUM database, which included 29 Cancer Registries (covering 21 million people, 35% of the Italian population). A total of 1,624,533 cancer cases diagnosed between 1976 and 2009 contributed to the study. For each registry, the observed prevalence was calculated. Prevalence for lengths of time exceeding the maximum duration of the registration and of the complete prevalence were derived by applying an estimated correction factor, the completeness index. This index was estimated by means of statistical regression models using cancer incidence and survival data available in registries with 18 years of observation or more. For 50 types or combinations of neoplasms, complete prevalence was estimated at 1.1.2010 as an absolute number and as a proportion per 100,000 inhabitants by sex, age group, area of residence, and years since diagnosis. Projections of complete prevalence for 1.1.2015 were computed under the assumption of a linear trend of the complete prevalence observed until 2010. Validated mixture cure models were used to estimate: the cure fraction, that is the proportion of patients who, starting from the time of diagnosis, are expected to reach the same mortality rate of the general population; the conditional relative survival (CRS), that is the cumulative probability of surviving some additional years, given that patients already survived a certain number of years; the time to cure, that is the number of years necessary so that conditional survival in the following five years (5-year CRS) exceeds the conventional threshold of 95% (i.e., mortality rates in cancer patients become undistinguishable compared to those of the general population); the proportion of patients already cured, i.e., people alive since a number of years exceeding time to cure. RESULTS: As of 1.1.2010, it was estimated that 2,587,347 people were alive after a cancer diagnosis, corresponding to 4.4% of the Italian population. A relevant geographical heterogeneity emerged, with a prevalence above 5% in northern registries and below 4% in southern areas. Men were 45% of the total (1,154,289) and women 55% (1,433,058). In the population aged 75 years or more, the proportions of prevalent cases were 20% in males and 13% in females, 11% between 60 and 74 years of age in both sexes. Nearly 600,000 Italian women were alive after a breast cancer diagnosis (41% of all women with this neoplasm), followed by women with cancers of the colon rectum (12%), corpus uteri (7%), and thyroid (6%). In men, 26% of prevalent cases (295,624) were patients with prostate cancer, 16% with either bladder or colon rectum cancer. The projections for 1.1.2015 are of three million (3,036,741) people alive after a cancer diagnosis, 4.9% of the Italian population; with a 20% increase for males and 15% for females, compared to 2010. The cure fractions were heterogeneous according to cancer type and age. Estimates obtained as the sum of cure fractions for all cancer types showed that more than 60% of patients diagnosed below the age of 45 years will reach the same mortality rate of the general population. This proportion decreased with increasing age and it was <30% for cancer diagnosed after the age of 74 years. It was observed that 60% of all prevalent cases (1,543,531 people or 2.6% of overall Italian population) had been diagnosed >5 years earlier (long-term survivors). Time to cure (5-year CRS>95%) was reached in <10 years by patients with cancers of the stomach, colon rectum, pancreas, corpus and cervix uteri, brain, and Hodgkin lymphoma. Mortality rates similar to the ones reported by the general population were reached after approximately 20 years for breast and prostate cancer patients. Five-year CRS remained <95% for >25 years after cancer diagnosis in patients with liver and larynx cancers, non-Hodgkin lymphoma, myeloma, and leukaemia. Time to cure was reached by 27% (20% in men and 33% in women) of all people living after a cancer diagnosis, defined as already cured. CONCLUSIONS: The study showed a steady increase over time (nearly +3% per year) of prevalent cases in Italy. A quarter of Italian cancer patients alive in 2010 can be considered as already cured. The AIRTUM Report 2014 describes characteristics of cancer patients and former-patients for 50 cancer types or combinations by sex and age. This detailed information promotes the conduction of studies aimed at expanding the current knowledge on the quality of life of these patients during and after the active phase of treatments (prevalence according to health status), on the long-term effects of treatments (in particular for paediatric patients), on the cost profile of cancer patients, and on rare tumours. All these observations have a high potential impact on health planning, clinical practice, and, most of all, patients' perspective.
    Epidemiologia e prevenzione 11/2014; 38(6 Suppl 1):1-122. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiogenic second cancer is a common late effect in long term cancer survivors. Currently there are few methods or tools available to visually evaluate the spatial distribution of risks of radiogenic late effects in the human body. We developed a risk visualization method and demonstrated it for radiogenic second cancers in tissues and organs of one patient treated with photon volumetric modulated arc therapy and one patient treated with proton craniospinal irradiation. Treatment plans were generated using radiotherapy treatment planning systems (TPS) and dose information was obtained from TPS. Linear non-threshold risk coefficients for organs at risk of second cancer incidence were taken from the Biological Effects of Ionization Radiation VII report. Alternative risk models including linear exponential model and linear plateau model were also examined. The predicted absolute lifetime risk distributions were visualized together with images of the patient anatomy. The risk distributions of second cancer for the two patients were visually presented. The risk distributions varied with tissue, dose, dose-risk model used, and the risk distribution could be similar to or very different from the dose distribution. Our method provides a convenient way to directly visualize and evaluate the risks of radiogenic second cancer in organs and tissues of the human body. In the future, visual assessment of risk distribution could be an influential determinant for treatment plan scoring.
    Radiation Oncology 04/2015; 10(1):107. DOI:10.1186/s13014-015-0404-x · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.
    Physics in Medicine and Biology 03/2015; 60(8):R155-R209. DOI:10.1088/0031-9155/60/8/R155 · 2.92 Impact Factor