Article

Head injury, α-synuclein Rep1, and Parkinson's disease.

The Parkinson's Institute, Sunnyvale, CA 94085, USA.
Annals of Neurology (Impact Factor: 11.91). 01/2012; 71(1):40-8. DOI: 10.1002/ana.22499
Source: PubMed

ABSTRACT To test the hypothesis that variability in SNCA Rep1, a polymorphic dinucleotide microsatellite in the promoter region of the gene encoding α-synuclein, modifies the association between head injury and Parkinson's disease (PD) risk.
Participants in the Farming and Movement Evaluation (FAME) and the Study of Environmental Association and Risk of Parkinsonism using Case-Control Historical Interviews (SEARCH), 2 independent case-control studies, were genotyped for Rep1 and interviewed regarding head injuries with loss of consciousness or concussion prior to Parkinson's disease (PD) diagnosis. Logistic regression modeling adjusted for potential confounding variables and tested interaction between Rep1 genotype and head injury.
Consistent with prior reports, relative to medium-length Rep1, short Rep1 genotype was associated with reduced PD risk (pooled odds ratio [OR], 0.7; 95% confidence interval [CI], 0.5-0.9), and long Rep1 with increased risk (pooled OR, 1.4; 95% CI, 0.95-2.2). Overall, head injury was not significantly associated with PD (pooled OR, 1.3; 95% CI, 0.9-1.8). However, head injury was strongly associated with PD in those with long Rep1 (FAME OR, 5.4; 95% CI, 1.5-19; SEARCH OR, 2.3; 95% CI, 0.6-9.2; pooled OR, 3.5; 95% CI 1.4-9.2, p-interaction = 0.02). Individuals with both head injury and long Rep1 were diagnosed 4.9 years earlier than those with neither risk factor (p = 0.03).
While head injury alone was not associated with PD risk, our data suggest head injury may initiate and/or accelerate neurodegeneration when levels of synuclein are high, as in those with Rep1 expansion. Given the high population frequency of head injury, independent verification of these results is essential.

0 Bookmarks
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson׳s disease is the second most common neurodegenerative disorder. The exact cause of selective dopaminergic neurodegeneration is unknown, but it is supposed that etiology of Parkinson׳s disease is multifactorial and consists of an interaction between environmental factors and genetic predisposition. To find out the association between environmental factors and risk of Parkinson׳s disease, a case control study was designed including 97 Parkinson׳s disease patients and 97 controls. Logistic regression analysis was used to determine the risk factors for Parkinson׳s disease. Results from the present study showed that gender, religion, education, place of living, occupation, dietary habits, tobacco chewing, smoking, alcohol intake, and head injury had no association with PD. However, chemical exposure and well water drinking were significantly associated with PD, which concluded that environmental factors could act as a risk factor for PD in some way.
    Bioinformation 06/2014; 10(6):342-6. · 0.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The groundbreaking discovery of mutations in the SNCA gene in a rare familial form of Parkinson's disease (PD) has revolutionized our basic understanding of the etiology of PD and other related disorders. Genome-wide Association Studies has demonstrated a wide array of single-nucleotide polymorphisms associated with the increasing risk of developing the more common type, sporadic PD, further corroborating the genetic etiology of PD. Among them, SNCA is a gene responsible for encoding α-synuclein, a protein found to be the major component of Lewy body and Lewy neurite, both of these components are the pathognomonic hallmarks of PD. Thus, it has been postulated that this gene plays specific roles in pathogenesis of PD. Here, we summarize the basic biological characteristics of the wild type of the protein (wt-α-synuclein) as well as genetic and epigenetic features of its encoding gene (SNCA) in PD. Based on these characteristics, SNCA may be involved in PD pathogenesis in at least 2 ways: wt-α-synuclein overexpression and its mutation types via different mechanisms. Associations between SNCA mutations and other Lewy body disorders, such as dementia with Lewy bodies and multiple system atrophy, are also mentioned. Finally, it is necessary to explore the influences which SNCA exerts on clinical and neuropathological phenotypes by promoting the transfer of scientific research into practice, such as clinical evaluation, diagnosis, and treatment of the disease. We believe it is promising to target SNCA for developing novel therapeutic strategies for parkinsonism. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neurobiology of Aging 12/2014; · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injuries (TBI) are induced by sudden acceleration-deceleration and/or rotational forces acting on the brain. Diffuse axonal injury (DAI) has been identified as one of the chief underlying causes of morbidity and mortality in head trauma incidents. DAIs refer to microscopic white matter (WM) injuries as a result of shearing forces that induce pathological and anatomical changes within the brain, which potentially contribute to significant impairments later in life. These microscopic injuries are often unidentifiable by the conventional computed tomography (CT) and magnetic resonance (MR) scans employed by emergency departments to initially assess head trauma patients and, as a result, TBIs are incredibly difficult to diagnose. The impairments associated with TBI may be caused by secondary mechanisms that are initiated at the moment of injury, but often have delayed clinical presentations that are difficult to assess due to the initial misdiagnosis. As a result, the true consequences of these head injuries may go unnoticed at the time of injury and for many years thereafter. The purpose of this review is to investigate these consequences of TBI and their potential link to neurodegenerative disease (ND). This review will summarize the current epidemiological findings, the pathological similarities, and new neuroimaging techniques that may help delineate the relationship between TBI and ND. Lastly, this review will discuss future directions and propose new methods to overcome the limitations that are currently impeding research progress. It is imperative that improved techniques are developed to adequately and retrospectively assess TBI history in patients that may have been previously undiagnosed in order to increase the validity and reliability across future epidemiological studies. The authors introduce a new surveillance tool (Retrospective Screening of Traumatic Brain Injury Questionnaire, RESTBI) to address this concern.
    Journal of Alzheimer's disease & Parkinsonism. 01/2014; 4.

Full-text (2 Sources)

Download
119 Downloads
Available from
May 20, 2014