Reinforcement of electrospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds

Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA.
Journal of Biomedical Materials Research Part A (Impact Factor: 3.37). 04/2012; 100(4):903-10. DOI: 10.1002/jbm.a.34027
Source: PubMed


Poly(ε-caprolactone) (PCL) is a promising material for tissue engineering applications; however, it can be difficult to create scaffolds with the morphology, hydrophilicity, and mechanical properties necessary to support tissue growth. Typically, pure PCL scaffolds have good cellular adhesion, but somewhat low mechanical properties (elastic modulus and tensile strength). This study addresses these issues by incorporating Al(2)O(3) whiskers as reinforcements within PCL membranes generated by electrospinning. Membranes were prepared with Al(2)O(3) content ranging from 1 to 20 wt % and characterized using XRD, TEM, and SEM to determine composition and morphology. The Al(2)O(3) whiskers were well dispersed within the PCL fibers, and the membranes had a highly porous morphology. The elastic modulus was significantly improved by the well aligned whisker reinforcements as verified by tensile testing. The cell morphology and proliferation studies demonstrate Al(2)O(3) whisker reinforced PCL scaffolds maintained the good biocompatibility. These improvements demonstrate that Al(2)O(3) whisker reinforced PCL scaffolds can be considered as a biocompatible material for tissue engineering and dental applications.

1 Follower
16 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Biomaterials that mimic the nanofibrous architecture of the natural extracellular matrix (ECM) are in the focus for stem cell hosting or delivery in tissue engineering of multilayered soft tissues such as skin, mucosa, or retina. Synthetic nanofibers for such ECM are usually produced by single-syringe electrospinning with only one needle-jet at very low production rates of 0.005-0.008 g·min⁻¹. The aim of this study was to utilize a novel industrial needle-free multijet electrospinning device with the potential for mass production of nanofibrous ECM (NF-ECM) exhibiting a controlled three-dimensional (3D) morphology for large-scale applications such as large area skin regeneration in patients with burns. Methods: The novel NanoSpider™ NS200, an industrial apparatus originally designed for electrospinning of nanofibrous textile meshes, was used to fabricate 3D NF-ECMs of the following synthetic and natural biopolymers: collagen, gelatin, poly(caprolactone) (PCL), and poly(L-lactide-co-glycolide) (PLGA). Different concentrations of Gelatin polymer solution were electrospun under varying processing conditions, namely speed of spinning electrode rotation (u) and electric field intensity (E) by altering applied voltage (v) or the distance between electrodes (h) to achieve homogeneous desirable 3D morphology. Nanofiber diameters were assessed by scanning electron microscopy (SEM). Biocompatibility was tested by WST-1 (water-soluble tetrazolium salt) proliferation assay of seeded human mesenchymal stem cells (HMSCs). Biological performance of HMSCs on 3D PLGA NF-ECM was compared to two-dimensional (2D) PLGA film controls via SEM and confocal microscopy. Western blotting addressed the expression of surface adhesion proteins; focal adhesion kinase (FAK), phosphorylated FAK (pY397), α-tubulin, paxillin, vinculin. and integrin subunits; α5, αv, and β1 proteins. Results: Large-scale mass production of NF-ECM membranes with a highly homogenous nanofiber morphology and 3D architecture could be produced with an extremely high production rate of 0.394±0.013 g·min⁻¹·m⁻¹ when compared to standard procedures. This was achieved by electrospinning a 20% (wt)/v gelatin solution, in an electric field intensity of 0.381 kV·mm⁻¹. The nanofibers possessed diameters of around 180±40 nm with 28% deviation. HSMCs proliferation was significantly improved on NF-ECMs derived from collagen, gelatin, and PLGA when compared to PCL or flat coverglass controls (p<0.01). PLGA NF-ECM in 3D nanofibrous architecture possessed significantly superior biocompatibility when compared to flat 2D PLGA film (p<0.05). Furthermore, on 3D PLGA NF-ECMs, HSMCs expressed a higher amount of α-tubulin and paxillin compared to the HMSCs cultured on a 2D PLGA film (p<0.05). HMSCs exhibited a complex multifaceted morphology on all NF-ECMs, where cells appeared to be integrated into the 3D NF-ECMs niches with complex cell filopodia extending into to all directions. In contrast, HMSCs on flat 2D films of the same materials or on coverglass displayed a simple flattened, monolayered structure. Conclusion: Needle-free multijet electrospinning can be used to mass produce artificial ECMs with intrinsic biocompatibility and desirable integration of stem cells for large-scale applications.
    Tissue Engineering Part C Methods 10/2012; 19(6). DOI:10.1089/ten.TEC.2012.0417 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To design, fabricate, and evaluate novel materials to remove silicone oil (SiO) droplets from intraocular lenses (IOL) during vitreoretinal surgery. Methods: Three different designs were fabricated using soft lithography of polydimethylsiloxane (PDMS), three-dimensional (3D) inverse PDMS fabrication using water dissolvable particles, and atomic layer deposition (ALD) of alumina (Al2O3) on surgical cellulose fibers. Laboratory tests included static and dynamic contact angle (CA) measurements with water and SiO, nondestructive x-ray microcomputer tomography (micro-CT), and microscopy. SiO removal was performed in vitro and ex vivo using implantable IOLs and explanted porcine eyes. Results: All designs exhibited enhanced hydrophobicity and oleophilicity. Static CA measurements with water ranged from 131° to 160° and with SiO CA approximately 0° in 120 seconds following exposure. Nondestructive x-ray analysis of the 3D PDMS showed presence of interconnected polydispersed porosity of 100 to 300 μm in diameter. SiO removal from IOLs was achieved in vitro and ex vivo using standard 20-G vitrectomy instrumentation. Conclusion: Removal of SiO from IOLs can be achieved using materials with lower surface energy than that of the IOLs. This can be achieved using appropriate surface chemistry and surface topography. Three designs, with enhanced hydrophobic properties, were fabricated and tested in vitro and ex vivo. All materials remove SiO within an aqueous environment. Preliminary ex vivo results were very promising, opening new possibilities for SiO removal in vitreoretinal surgeries. Translational relevance: This is the first report of an instrument that can lead to successful removal of SiO from the surface of IOL. In addition to the use of this instrument/material in medicine it can also be used in the industry, for example, retrieval of oil spills from bodies of water.
    09/2014; 3(5):4. DOI:10.1167/tvst.3.5.4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering holds great promise to develop functional constructs resembling the structural organization of native tissues to improve or replace biological functions, with the ultimate goal of avoiding organ transplantation. In tissue engineering, cells are often seeded into artificial structures capable of supporting three-dimensional (3D) tissue formation. An optimal scaffold for tissue-engineering applications should mimic the mechanical and functional properties of the extracellular matrix (ECM) of those tissues to be regenerated. Amongst the various scaffolding techniques, electrospinning is an outstanding one which is capable of producing non-woven fibrous structures with dimensional constituents similar to those of ECM fibres. In recent years, electrospinning has gained widespread interest as a potential tissue-engineering scaffolding technique and has been discussed in detail in many studies. So why this review? Apart from their clear advantages and extensive use, electrospun scaffolds encounter some practical limitations, such as scarce cell infiltration and inadequate mechanical strength for load-bearing applications. A number of solutions have been offered by different research groups to overcome the above-mentioned limitations. In this review, we provide an overview of the limitations of electrospinning as a tissue-engineered scaffolding technique, with emphasis on possible resolutions of those issues. Copyright © 2015 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 01/2015; DOI:10.1002/term.1978 · 5.20 Impact Factor
Show more