A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics

Department of Physics, University of California, Santa Barbara, California 93106, USA.
Optics Express (Impact Factor: 3.53). 01/2012; 20(2):1503-11. DOI: 10.1364/OE.20.001503
Source: PubMed

ABSTRACT Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have fabricated 2024 pixel microwave kinetic inductance detector (MKID) arrays in the ultraviolet/optical/near-IR (UVOIR) regime that are currently in use in astronomical instruments. In order to make MKIDs desirable for novel instruments, larger arrays with nearly perfect yield need to be fabricated. As array size increases, however, the percent yield often decreases due to frequency collisions in the readout. The per-pixel performance must also be improved, namely the energy resolution. We are investigating ways to reduce frequency collisions and to improve the per pixel performance of our devices through new superconducting material systems and fabrication techniques. There are two main routes that we are currently exploring. First, we are attempting to create more uniform titanium nitride films through the use of atomic layer deposition rather than the more traditional sputtering method. In addition, we are experimenting with completely new material systems for MKIDs, such as platinum silicide.
    IEEE Transactions on Applied Superconductivity 12/2014; 25(3). DOI:10.1109/TASC.2014.2377598 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method is proposed and experimentally explored for in-situ calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response is analyzed in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microstrip and coplanar-waveguide resonator devices were investigated and a recovery within 1% of the observed complex transmission amplitude was achieved with both analysis approaches. The experimental configuration used in microwave characterization of the devices and self-consistent constraints for the electromagnetic constitutive relations for parameter extraction are also presented.
    Review of Scientific Instruments 01/2015; 86(1):013103. DOI:10.1063/1.4904972 · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have experimentally explored and carefully characterized the important properties of TiN, including the resistivity, nonlinear kinetic inductance, the anomalous electro-dynamical response, and the two-level-system induced frequency shift and noise. We suggest that some of these properties, which are not well understood and are different from conventional superconductors, need further study and special consideration in kinetic inductance detector and parametric amplifier applications.
    Journal of Low Temperature Physics 01/2014; 176(3-4). DOI:10.1007/s10909-014-1089-5 · 1.04 Impact Factor

Full-text (2 Sources)

Available from
Jan 28, 2015