High-resolution biosensor based on localized surface plasmons.

Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic.
Optics Express (Impact Factor: 3.53). 01/2012; 20(1):672-80. DOI: 10.1364/OE.20.000672
Source: PubMed

ABSTRACT We report on a new biosensor with localized surface plasmons (LSP) based on an array of gold nanorods and the total internal reflection imaging in polarization contrast. The sensitivity of the new biosensor is characterized and a model detection of DNA hybridization is carried out. The results are compared with a reference experiment using a conventional high-resolution surface plasmon resonance (SPR) biosensor. We show that the LSP-based biosensor delivers the same performance as the SPR system while involving significantly lower surface densities of interacting molecules. We demonstrate a limit of detection of 100 pM and a surface density resolution of only 35 fg×mm-2 that corresponds to less than one DNA molecule per nanoparticle on average.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.
    Plasmonics 08/2013; 9(4):765-772. DOI:10.1007/s11468-013-9657-0 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transmission properties of plasmonic structure arrays are simulated by finite element method. The array unit is composed of two combined triangular prisms. Results reveal that several resonant modes are found in the transmission spectra, which are due to the resonance of the surface plasmon polariton in the metal slit or to the localized surface plasmon resonance of the combined prisms. The resonant wavelengths can be tuned by changing the structural parameters of the combined prisms. In addition, the resonant modes are sensitive to small refractive index changes of the surrounding media, revealing potential detection applications in nanophotonic systems.
    Photonics and Nanostructures - Fundamentals and Applications 09/2014; 12(5). DOI:10.1016/j.photonics.2014.09.001 · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.
    Sensors 08/2014; 14(8):15458-15479. DOI:10.3390/s140815458 · 2.05 Impact Factor

Full-text (2 Sources)

Available from
Aug 18, 2014