Article

High-resolution biosensor based on localized surface plasmons.

Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic.
Optics Express (Impact Factor: 3.53). 01/2012; 20(1):672-80. DOI: 10.1364/OE.20.000672
Source: PubMed

ABSTRACT We report on a new biosensor with localized surface plasmons (LSP) based on an array of gold nanorods and the total internal reflection imaging in polarization contrast. The sensitivity of the new biosensor is characterized and a model detection of DNA hybridization is carried out. The results are compared with a reference experiment using a conventional high-resolution surface plasmon resonance (SPR) biosensor. We show that the LSP-based biosensor delivers the same performance as the SPR system while involving significantly lower surface densities of interacting molecules. We demonstrate a limit of detection of 100 pM and a surface density resolution of only 35 fg×mm-2 that corresponds to less than one DNA molecule per nanoparticle on average.

Full-text

Available from: Hana Sípová, Aug 18, 2014
1 Follower
 · 
331 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.
    Plasmonics 08/2013; 9(4):765-772. DOI:10.1007/s11468-013-9657-0 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transmission properties of plasmonic structure arrays are simulated by finite element method. The array unit is composed of two combined triangular prisms. Results reveal that several resonant modes are found in the transmission spectra, which are due to the resonance of the surface plasmon polariton in the metal slit or to the localized surface plasmon resonance of the combined prisms. The resonant wavelengths can be tuned by changing the structural parameters of the combined prisms. In addition, the resonant modes are sensitive to small refractive index changes of the surrounding media, revealing potential detection applications in nanophotonic systems.
    Photonics and Nanostructures - Fundamentals and Applications 09/2014; 12(5). DOI:10.1016/j.photonics.2014.09.001 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the influence of the Ge wetting layer on both ohmic and scattering losses of a surface plasmon-polariton (SPP) wave in Ag film deposited on SiO2 substrate with an e-beam evaporator. Samples were examined by means of atomic force microscopy (AFM), spectroscopic ellipsometry (SE), two-dimensional X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and microscopic four-point probe (M4PP) sheet resistance measurements. Ag films of 100 nm thickness were deposited at 180 and 295 K directly onto the substrates with or without a Ge interlayer. In AFM scans we confirm the fact that the commonly used Ge adhesion layer smoothens the surface of Ag film and therefore reduces scattering losses of the SPP wave on surface roughness. However, our ellipsometric measurements indicate for the first time that segregation of Ge leads to a considerable increase in ohmic losses connected with a boost of the imaginary part of Ag permittivity in the 500-800 nm spectral range. Moreover the trend develops over time what was confirmed in series of measurements performed at an interval of three months. XPS analysis confirms the Ge segregation to the Ag free surface and the most probably to grain boundaries. M4PP measurements show that the specific resistivity in Ag films evaporated on a Ge interlayer at 295 K is nearly twice as high as in layers deposited directly on a SiO2 substrate. The use of an amorphous Al2O3 overlayer prevents Ge segregation to free surface.
    ACS Applied Materials & Interfaces 04/2015; 7(17). DOI:10.1021/acsami.5b01471 · 5.90 Impact Factor