Article

Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons.

Department of Biochemistry, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(1):e29597. DOI: 10.1371/journal.pone.0029597
Source: PubMed

ABSTRACT Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) provide new prospects for studying human neurodevelopment and modeling neurological disease. In particular, iPSC-derived neural cells permit a direct comparison of disease-relevant molecular pathways in neurons and glia derived from patients and healthy individuals. A prerequisite for such comparative studies are robust protocols that efficiently yield standardized populations of neural cell types. Here we show that long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from 3 hESC and 6 iPSC lines in two independent laboratories exhibit consistent characteristics including i) continuous expandability in the presence of FGF2 and EGF; ii) stable neuronal and glial differentiation competence; iii) characteristic transcription factor profile; iv) hindbrain specification amenable to regional patterning; v) capacity to generate functionally mature human neurons. We further show that lt-NES cells are developmentally distinct from fetal tissue-derived radial glia-like stem cells. We propose that lt-NES cells provide an interesting tool for studying human neurodevelopment and may serve as a standard system to facilitate comparative analyses of hESC and hiPSC-derived neural cells from control and diseased genetic backgrounds.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.
    PLoS ONE 09/2014; 9(9):e104301. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impressive neuronal diversity found within the nervous system emerges from a limited pool of neural progenitor cells that proceed through different gene expression programs to acquire distinct cell fates. Here, we review recent evidence indicating that microRNAs (miRNAs) are critically involved in conferring neural cell identities during neural induction, neuronal differentiation and subtype specification. Several studies have shown that miRNAs act in concert with other gene regulatory factors and genetic switches to regulate the spatial and temporal expression profiles of important cell fate determinants. So far, most studies addressing the role of miRNAs during neurogenesis were conducted using animal models. With the advent of human pluripotent stem cells and the possibility to differentiate these into neural stem cells, we now have the opportunity to study miRNAs in a human context. More insight into the impact of miRNA-based regulation during neural fate choice could in the end be exploited to develop new strategies for the generation of distinct human neuronal cell types.
    Cell and Tissue Research 08/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: Stem cell-based interventions aim to use special regenerative cells (stem cells) to facilitate neuronal function beyond the site of the injury. Many studies involving animal models of spinal cord injury (SCI) suggest that certain stem cell-based therapies may restore function after SCI. Currently, in case of spinal cord injuries, new discoveries with clinical implications have been continuously made in basic stem cell research, and stem cell-based approaches are advancing rapidly toward application in patients. There is a huge base of preclinical evidence in vitro and in animal models which suggests the safety and clinical efficacy of cellular therapies after SCI. Despite this, data from clinical studies is not very encouraging and at times confounding. Here, we have attempted to cover preclinical and clinical evidence base dealing with safety, feasibility and efficacy of cell based interventions after SCI. The limitations of preclinical data and the reasons underlying its failure to translate in a clinical setting are also discussed. Based on the evidence base, it is suggested that a multifactorial approach is required to address this situation. Need for standardized, stringently designed multi-centric clinical trials for obtaining validated proof of evidence is also highlighted.
    Indian Journal of Orthopaedics 01/2015; 49(1):56-71. · 0.62 Impact Factor

Full-text

Download
40 Downloads
Available from
Jun 1, 2014