Article

Oncologic applications of diffusion-weighted MRI in the body

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, USA.
Journal of Magnetic Resonance Imaging (Impact Factor: 2.79). 02/2012; 35(2):257-79. DOI: 10.1002/jmri.22786
Source: PubMed

ABSTRACT Diffusion-weighted MRI (DWI) allows the detection of malignancies in the abdomen and pelvis. Lesion detection and characterization using DWI largely depends on the increased cellularity of solid or cystic lesions compared with the surrounding tissue. This increased cellularity leads results in restricted diffusion as indicated by reduction in the apparent diffusion coefficient (ADC). Low pretreatment ADC values of several malignancies have been shown to be predictive of better outcome. DWI can assess response to systemic or regional treatment of cancer at a cellular level and will therefore detect successful treatment earlier than anatomical measures. In this review, we provide a brief technical overview of DWI, discuss quantitative image analysis approaches, and review studies which have used DWI for the purpose of detection and characterization of malignancies as well as the early prediction of treatment response.

1 Follower
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern radiologic imaging is an aid to treatment planning for localized renal cancer, enabling characterization of mass lesions. For patients who present with advanced renal cancer, new imaging techniques enable a functional assessment of treatment response not possible using anatomic measurements alone. Multidetector CT urography permits simultaneous assessment of the kidneys and urinary tract for patients with unexplained hematuria. Both CT and MRI play a significant role in staging and follow up of patients treated for urothelial cancer. Newer imaging methods such as diffusion-weighted MRI have shown promising results for improving accuracy of staging and follow up of urothelial cancer.
    Surgical Oncology Clinics of North America 10/2014; 23(4). DOI:10.1016/j.soc.2014.06.001 · 1.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assessment of the response to treatment of metastases is crucial in daily oncological practice and clinical trials. For soft tissue metastases, this is done using computed tomography (CT), Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET) using validated response evaluation criteria. Bone metastases, which frequently represent the only site of metastases, are an exception in response assessment systems, because of the nature of the fixed bony defects, their complexity, which ranges from sclerotic to osteolytic and because of the lack of sensitivity, specificity and spatial resolution of the previously available bone imaging methods, mainly bone scintigraphy. Techniques such as MRI and PET are able to detect the early infiltration of the bone marrow by cancer, and to quantify this infiltration using morphologic images, quantitative parameters and functional approaches. This paper highlights the most recent developments of MRI and PET, showing how they enable early detection of bone lesions and monitoring of their response. It reviews current knowledge, puts the different techniques into perspective, in terms of indications, strengths, weaknesses and complementarity, and finally proposes recommendations for the choice of the most adequate imaging technique.
    European Journal of Cancer 10/2014; 50(15). DOI:10.1016/j.ejca.2014.07.002 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the repeatability of the quantitative magnetic resonance imaging (MRI) metric (apparent diffusion coefficient [ADC]) derived from reduced field-of-view diffusion-weighted (rFOV DWI) on thyroid glands in a clinical setting. Ten healthy human volunteers were enrolled in MRI studies performed on a 3-T MRI scanner. Each volunteer was designed to undergo 3 longitudinal examinations (2 weeks apart) with 2 repetitive sessions within each examination, which included rFOV and conventional full field-of-view (fFOV) DWI scans. Diffusion-weighted images were assessed and scored based on image characteristics. Apparent diffusion coefficient values of thyroid glands from all participants were calculated based on regions of interest. Repeatability analysis was performed based on the framework proposed by the Quantitative Imaging Biomarker Alliance, generating 4 repeatability metrics: within-participant variance (σw), repeatability coefficients, intraclass correlation coefficient, and within-participant coefficient of variation. Student t test was used to compare the performance difference between rFOV and fFOV DWI. The overall image quality from rFOV DWI was significantly higher than that from fFOV DWI (P = 0.04). The ADC values calculated from rFOV DWI were significantly lower than corresponding values from fFOV DWI (P < 0.001). There was no significant difference in ADC values across sessions and examinations in either rFOV or fFOV DWI (P > 0.05). Reduced field-of-view DWI had lower values of σw, repeatability coefficient, and within-participant coefficient of variation and had a higher value of intraclass correlation coefficient compared with fFOV DWI across either sessions or examinations. This study demonstrated that rFOV DWI produced more superior-quality DWI images and more repeatable ADC measurements compared with fFOV DWI, thus providing a feasible quantitative imaging tool for investigating thyroid glands in clinical settings.
    Journal of Computer Assisted Tomography 02/2015; DOI:10.1097/RCT.0000000000000227 · 1.60 Impact Factor