Article

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus.

Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, UK.
Nature Genetics (Impact Factor: 29.65). 01/2012; 44(3):338-42. DOI: 10.1038/ng.1084
Source: PubMed

ABSTRACT Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

0 Bookmarks
 · 
226 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.
    Genes & Development 10/2014; · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. Mutations in telomerase or other telomere-maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure. Telomerase localization to telomeres requires an interaction with a region on the surface of the telomere-binding protein TPP1 known as the TEL patch. Here we identify a family with aplastic anemia and other related hematopoietic disorders, in which a one amino acid deletion in the TEL patch of TPP1 (ΔK170) segregates with disease. All family members carrying this mutation, but not those with wild-type TPP1, have short telomeres. When introduced into 293T cells, TPP1 with the ΔK170 mutation is able to localize to telomeres but fails to recruit telomerase to telomeres, supporting a causal relationship between this TPP1 mutation and bone marrow disorders. ACD/TPP1 is thus a newly-identified telomere-related gene in which mutations cause aplastic anemia and related bone marrow failure disorders.
    Blood 09/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres consist of long nucleotide repeats and a protein complex at chromosome ends essential for chromosome stability. Telomeres shorten with each cell division and thus are markers of cellular age. Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by germ-line mutations in key telomere biology genes that result in extremely short telomeres. The triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC but highly variable. Patients with DC may also have but numerous other medical problems, including pulmonary fibrosis, liver abnormalities, avascular necrosis of the hips, and stenosis of the esophagus, lacrimal ducts, and/or urethra. All modes of inheritance have been reported in DC and de novo mutations are common. Broad phenotypic heterogeneity occurs within DC. Clinically severe variants of DC are Hoyeraal-Hreidarsson syndrome and Revesz syndrome. Coats plus syndrome joined the spectrum of DC with the discovery that it is caused by mutations in a telomere-capping gene. Less clinically severe variants, such as subsets of apparently isolated aplastic anemia or pulmonary fibrosis, have also been recognized. These patients may not have the DC-associated mucocutaneous triad or complicated medical features, but they do have the same underlying genetic etiology. This has led to the use of the descriptive term telomere biology disorder (TBD). This chapter will review the connection between telomere biology and human disease through the examples of DC and its related TBDs.
    Progress in molecular biology and translational science 01/2014; 125C:41-66. · 3.11 Impact Factor

Full-text

Download
45 Downloads
Available from
May 20, 2014