Structure, stability and dynamics of norovirus P domain derived protein complexes studied by native mass spectrometry

Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
Journal of Structural Biology (Impact Factor: 3.37). 02/2012; 177(2):273-82. DOI: 10.1016/j.jsb.2012.01.005
Source: PubMed

ABSTRACT Expression of the protruding (P) domain of the norovirus capsid protein, in vitro, results in the formation of P dimers and larger oligomers, 12-mer and 24-mer P particles. All these P complexes retain the authentic antigenicity and carbohydrate-binding function of the norovirus capsid. They have been used as tools to study norovirus-host interactions, and the 24-mer P particle has been proposed as a vaccine and vaccine platform against norovirus and other pathogens. In view of their pharmaceutical interest it is important to characterise the structure, stability and dynamics of these protein complexes. Here we use a native mass spectrometric approach. We analyse the P particles under both non-reducing and reducing conditions, as it is known that the macromolecular assemblies are stabilised by inter-subunit disulphide bonding. A novel 18-mer complex is identified, and we show that under reducing conditions the 24-mer dissociates into P dimers that reassemble into the 12-mer small P particle and another novel 36-mer complex. The collisional cross-sections of the 12-mer and 24-mer P particles determined by ion mobility MS are in good agreement with theoretical predictions and electron microscopy data. We propose a model structure for the 18-mer based on ion mobility experiments. Our results demonstrate the interchangeable nature and dynamic relationship of all P domain complexes and confirm their binding activity to the host receptors - human histo blood group antigens (HBGAs). These findings, together with the identification of the 18-mer and 36-mer P complexes add new information to the intriguing interactions of the norovirus P domain.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus-host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M(-1), while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M(-1). Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies.
    Glycobiology 10/2014; DOI:10.1093/glycob/cwu100 · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deamidation is a non-enzymatic post-translational modification of asparagine to aspartic acid or glutamine to glutamic acid, converting an uncharged amino acid to a negatively charged residue. It is plausible that deamidation of asparagine and glutamine residues would result in disruption of a proteins' hydrogen bonding network and thus lead to protein unfolding. To test this hypothesis Calmodulin and B2M were deamidated and analysed using tandem mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The gas phase hydrogen bonding networks of deamidated and non-deamidated protein isoforms were probed by varying the infra-red multi-photon dissociation (IRMPD) laser power in a linear fashion and plotting the resulting electron capture dissociation (ECD) fragment intensities as a melting curve at each amino acid residue. Analysis of the unfolding maps highlighted increased fragmentation at lower laser powers localised around heavily deamidated regions of the proteins. In addition fragment intensities were decreased across the rest of the proteins which we propose is due to the formation of salt-bridges strengthening the intramolecular interactions of the central regions. These results were supported by a computational flexibility analysis of the mutant and unmodified proteins, which would suggest that deamidation can affect the global structure of a protein via modification of the hydrogen bonding network near the deamidation site and that top down FTICR-MS is an appropriate technique for studying protein folding. This article is protected by copyright. All rights reserved. © 2015 The Protein Society.
    Protein Science 02/2015; DOI:10.1002/pro.2659 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noroviruses (NoVs), an important cause of gastroenteritis in humans, recognize human histo-blood group antigens (HBGAs) as receptors. The crystal structures of the protruding (P) domain of a GII.10 NoV (Vietnam 026) in complex with various HBGA oligosaccharides were elucidated. However, the HBGA binding profile of this virus remains unknown. In this study, we determined the saliva and oligosaccharide binding profiles of this virus and the roles of amino acids that are involved in HBGA binding. Our data showed that Vietnam 026 bound to all ABO secretor and non-secretor saliva with clear signals detected by monoclonal antibodies against H3, H1, Le(y), Le(a) and sialyl Le(a). Mutagenesis study confirmed the binding site determined by the crystallography study, in which single mutations wiped out the binding function. We also identified amino acids surrounding the central binding pocket that may participate in the binding by affecting the HBGA binding specificity of the GII.10 NoV. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 01/2015; 476C:386-394. DOI:10.1016/j.virol.2014.12.039 · 3.28 Impact Factor