Article

Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism.

Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, and Department of Infectious Diseases, First Hospital, Changchun, PR China.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.99). 01/2012; 50(3-4):590-6. DOI:10.1016/j.fct.2012.01.002
Source: PubMed

ABSTRACT Juglone, a major chemical constituent of Juglans mandshruica Maxim, is a promising anticancer agent that has shown a strong activity against cancer cells in vitro. Our previous study showed that juglone inhibited the proliferation of HL-60 cells with an IC50 value ∼8 μM. To further explore the proapoptotic mechanism of juglone, we investigated the role of the reactive oxygen species (ROS) in the apoptosis induced by juglone in HL-60 cells. The generation of ROS was about 2 to 8-fold as compared to control cell after treatment with juglone (2, 4 and 8 μM) for 24 h. The glutathione (GSH) depletion was consistent with ROS generation after treatment with juglone. Reversal of apoptosis in antioxidants (NAC and catalase) pretreated cells indicated the involvement of ROS in juglone-induced apoptosis. The cleavage of PARP and procaspase-3 and -9, loss of mitochondrial membrane potential (△Ψm), and release of cytochrome c (Cyt c) and Smac induced by juglone were significantly blocked by NAC. NAC also prevented the inhibition the phosphorylation of Akt and mTOR proteins by juglone. Collectively, these results indicated that ROS played a significant role in the apoptosis induced by juglone in human leukemia cell HL-60.

0 0
 · 
0 Bookmarks
 · 
89 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Novel β-lapachone analogs 2-phenyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ1), 2-p-tolyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ3) and 2-methyl-2-phenyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione (NQ7), which have trypanocidal activity, were assayed for cytotoxic effects on murine EL-4 T lymphoma cells. The NQs inhibited the proliferation of EL-4 cells at concentrations above 1 μM. Nuclear staining of the EL-4 cells revealed chromatin condensation and a nuclear morphology compatible with the induction of apoptosis. Flow cytometry assays with annexin V-FITC and propidium iodide confirmed the cell death by apoptosis. Using electron paramagnetic resonance (EPR), a semiquinone radical was detected in EL-4 cells treated with NQs. In addition, a decrease in the GSH level in parallel with reactive oxygen species (ROS) production was observed. Preincubation with n-acetyl-l-cysteine (NAC) was able to reverse the inhibitory effects of the NQs on cell proliferation, indicating that ROS generation is involved in NQ-induced apoptosis. In addition, the NQs induced a decrease in the mitochondrial membrane potential and increased the proteolytic activation of caspases 9 and 3 and the cleavage of Poly (ADP-Ribose) Polymerase (PARP). In conclusion, these results indicate that redox cycling is induced by the NQs in the EL-4 cell line, with the generation of ROS and other free radicals that could inhibit cellular proliferation as a result of the induction of the intrinsic apoptosis pathway.
    Toxicology in Vitro 08/2013; · 2.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Metal nanomaterial could effectively decrease tumor resistance to anti-cancer drugs. In this paper, we have explored the synergistic effect and mechanisms of zinc oxide nanoparticles (ZnO Nps) and isoorientin (ISO) on cytotoxicity in human hepatoma (HepG2) cells. The results showed that ZnO Nps could exert dose- and time-dependent cytotoxicity in HepG2 cells, and the combining treatment resulted in a greater cytotoxicity than single treatment. ZnO Nps could synergistically potentiate ISO to induce apoptosis through resulting in mitochondrial dysfunction, inhibiting the phosphorylation of Akt and ERK1/2, and enhancing the phosphorylation of JNK and P38. Additionally, ZnO Nps were uptaked by cells through endocytic pathway and it enhanced the cellular uptake of ISO, while no significant injury was found in normal liver cells after the combined treatment. These results suggest that the combination of metal nanoparticle with anti-cancer drugs may provide a promising alternative for novel cancer treatments.
    Toxicology Letters 12/2013; · 3.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Allergic dermatitis among common skin diseases is a chronic and recurrent inflammatory skin disorder caused by genetic, environmental, allergens as well as microbial factors. Allergic dermatitis patients clinically present skin erythematous plaques, eruption, elevated serum immunoglobulin E (IgE) and T helper cell type 2 (Th2) cytokine levels. The leaf of walnut tree Juglans mandshurica Maxim (JM) is consumed food and traditional phytomedicine in Asia, China, Siberia and Korea. JM has been reported to have various pharmacological activities, such as anti-tumor, anti-oxidative, and anti-bacterial effects. However, no study of the inhibitory effects of JM on allergic dermatitis has been reported. Here, we demonstrated the effect of JM against 2,4-dinitrochlorobenzene-induced allergic dermatitis-like skin lesions. 0.5% JM or 1% dexamethasone (positive control) applied to the dorsal skin inhibited development of allergic dermatitis-like skin lesions and scratching behavior. Moreover, the Th2-mediated inflammatory cytokines IgE, tumor necrosis factor-α, interleukin (IL)-1, and IL-13, were significantly reduced by JM treatment. Thus JM can inhibit development of allergic dermatitis-like skin lesions in mice by regulating immune mediators, and may be an effective alternative therapy for allergic dermatitis.
    Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie 11/2013; · 1.43 Impact Factor

Hua Li Xu