Electrochemical disinfection: an efficient treatment to inactivate Escherichia coli O157:H7 in process wash water containing organic matter.

Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia, E-30100, Spain.
Food Microbiology (Impact Factor: 3.41). 05/2012; 30(1):146-56. DOI: 10.1016/
Source: PubMed

ABSTRACT The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 10⁵ cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-norovirus (anti-NoV) effect of grape seed extract (GSE) was examined by plaque assay for murine norovirus 1 (MNV-1), cell-binding reverse transcription-PCR for human NoV GII.4, and saliva-binding enzyme-linked immunosorbent assay for human NoV GII.4 P particles, with or without the presence of interfering substances (dried milk and lettuce extract). GSE at 0.2 and 2 mg/ml was shown to reduce the infectivity of MNV-1 (>3-log PFU/ml) and the specific binding ability of NoV GII.4 to Caco-2 cells (>1-log genomic copies/ml), as well as of its P particles to salivary human histo-blood group antigen receptors (optical density at 450 nm of >0.8). These effects were decreased as increasing concentrations of dried milk (0.02 and 0.2%) or lettuce extract were added. Under an electron microscope, human NoV GII.4 virus-like particles showed inflation and deformation after treatment with GSE. Under conditions that simulated applications in the food industry, the anti-NoV effect of GSE using MNV-1 as a target organism was shown to be limited in surface disinfection (<1-log PFU/ml, analyzed in accordance with EN 13697:2001). However, a 1.5- to 2-log PFU/ml reduction in MNV-1 infectivity was noted when 2 mg of GSE/ml was used to sanitize water in the washing bath of fresh-cut lettuce, and this occurred regardless of the chemical oxygen demand (0 to 1,500 mg/ml) of the processing water.
    Applied and Environmental Microbiology 08/2012; 78(21):7572-8. · 3.95 Impact Factor


Available from
Jun 1, 2014