Electrochemical disinfection: An efficient treatment to inactivate Escherichia coli O157:H7 in process wash water containing organic matter

Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia, E-30100, Spain.
Food Microbiology (Impact Factor: 3.37). 05/2012; 30(1):146-56. DOI: 10.1016/
Source: PubMed

ABSTRACT The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 10⁵ cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The suitability of high power ultrasound (HPU, 20 kHz, 0.28 kW/l) combined with residual chemical sanitizers for water reconditioning was studied. A synergetic disinfection effect was observed when HPU was combined with peroxyacetic acid (PAA) or a commercial mix of organic acids and phenolic compounds (OA/PC). In recycled water (RW) with a chemical oxygen demand (COD) of 500 mg O2/l, PAA inactivated 2 log units of Escherichia coli O157:H7 at concentrations of 3.2, 6.4, 16 mg/l after 7 min, 2 min, 29 s, respectively. The OA/PC or HPU treatments alone needed 26 min treatments to achieve the same reduction. The addition of TiO2 (5 g/l) to HPU (sonocatalysis) did not improve E. coli O157:H7 inactivation. However, when HPU was combined with a residual concentration of PAA (3.2 mg/l), the total inactivation of E. coli O157:H7 and Salmonella (6 log unit reductions) occurred after 11 min, but for Listeria monocytogenes only 1.7 log reductions were detected after 20 min. When HPU was combined with OA/PC, a synergistic effect for the inactivation of E. coli O157:H7 was also observed, but this sanitizer significantly modified the physical-chemical quality characteristics of the RW. These results show that the residual PAA concentration that can be found in the wash water combined with HPU could result in an environmentally friendlier and toxicologically safer strategy for water reconditioning of the fresh-cut industry. The use of the sanitizer alone requires higher concentrations and/or longer contacts times. Even though the residual PAA in combination with HPU was adequate for water reconditioning, it is not appropriate for the process wash water because this wash water must be instantaneously disinfected.
    Food Control 07/2015; 53. DOI:10.1016/j.foodcont.2014.12.032. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The survival of Salmonella and Escherichia coli O157:H7 on strawberries, basil leaves, and other leafy greens (spinach leaves, lamb and butterhead lettuce leaves, baby leaves, and fresh-cut iceberg lettuce) was assessed at cold (<7°C) and ambient temperatures. All commodities were spot inoculated with E. coli O157:H7 or Salmonella to obtain an initial inoculum of 5 to 6 log and 4 to 5 log CFU/g for strawberries and leafy greens, respectively. Samples were air packed. Strawberries were stored at 4, 10, 15, and 22°C and basil leaves and other leafy greens at 7, 15, and 22°C for up to 7 days (or less if spoiled before). Both Salmonella and E. coli O157:H7 showed a gradual decrease in numbers if inoculated on strawberries, with a similar reduction observed at 4, 10, and 15°C (2 to 3 log after 5 days). However, at 15°C (and 10°C for E. coli O157:H7), the survival experiment stopped before day 7, as die-off of both pathogens below the lower limit of detection was achieved or spoilage occurred. At 22°C, strawberries were moldy after 2 or 4 days. At that time, a 1- to 2-log reduction of both pathogens had occurred. A restricted die-off (on average 1.0 log) and increase (on average , 0.5 log) of both pathogens on basil leaves occurred after 7 days of storage at 7 and 22°C, respectively. On leafy greens, a comparable decrease as on basil was observed after 3 days at 7°C. At 22°C, both pathogens increased to higher numbers on fresh-cut iceberg and butterhead lettuce leaves (on average 1.0 log), probably due to the presence of exudates. However, by using spot inoculation, the increase was rather limited, probably due to minimized contact between the inoculum and cell exudates. Avoiding contamination, in particular, at cultivation (and harvest or postharvest) is important, as both pathogens survive during storage, and strawberries, basil, and other leafy green leaves are consumed without inactivation treatment.
    Journal of food protection 04/2015; 78(4):652-60. DOI:10.4315/0362-028X.JFP-14-354 · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmitted through the fecal-oral route, the hepatitis A virus (HAV) is acquired primarily through close personal contact and foodborne transmission. HAV detection in food is mainly carried out by quantitative RT-PCR (RT-qPCR). The discrimination of infectious and inactivated viruses remains a key obstacle when using RT-qPCR to quantify enteric viruses in food samples. Initially, viability dyes, propidium monoazide (PMA) and ethidium monoazide (EMA), were evaluated for the detection and quantification of infectious HAV in lettuce wash water. Results showed that PMA combined with 0.5% Triton X-100 (Triton) was the best pretreatment to assess HAV infectivity and completely eliminated the signal of thermally inactivated HAV in lettuce wash water. This procedure was further evaluated in artificially inoculated foods (at concentrations of ca. 6×10(4), 6×10(3) and 6×10(2)TCID50) including lettuce, parsley, spinach, cockles and coquina clams. The PMA-0.5% Triton pretreatment reduced the signal of thermally inactivated HAV between 0.5 and 2logs, in lettuce and spinach concentrates. Moreover, this pretreatment reduced the signal of inactivated HAV by more than 1.5logs, in parsley and ten-fold diluted shellfish samples inoculated at the lowest concentration. Overall, this pretreatment (50μM PMA-0.5% Triton) significantly reduced the detection of thermally inactivated HAV, depending on the initial virus concentration and the food matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
    International Journal of Food Microbiology 02/2015; 201C:1-6. DOI:10.1016/j.ijfoodmicro.2015.02.012 · 3.16 Impact Factor


Available from
Jun 1, 2014