Article

Methods for cell and particle tracking.

Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
Methods in enzymology (Impact Factor: 1.9). 01/2012; 504:183-200. DOI: 10.1016/B978-0-12-391857-4.00009-4
Source: PubMed

ABSTRACT Achieving complete understanding of any living thing inevitably requires thorough analysis of both its anatomic and dynamic properties. Live-cell imaging experiments carried out to this end often produce massive amounts of time-lapse image data containing far more information than can be digested by a human observer. Computerized image analysis offers the potential to take full advantage of available data in an efficient and reproducible manner. A recurring task in many experiments is the tracking of large numbers of cells or particles and the analysis of their (morpho)dynamic behavior. In the past decade, many methods have been developed for this purpose, and software tools based on these are increasingly becoming available. Here, we survey the latest developments in this area and discuss the various computational approaches, software tools, and quantitative measures for tracking and motion analysis of cells and particles in time-lapse microscopy images.

0 Bookmarks
 · 
228 Views
  • Pattern Recognition Letters 02/2015; 53:38-43. DOI:10.1016/j.patrec.2014.11.005 · 1.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells.
    International Journal of Molecular Sciences 01/2015; 16(1):1949. DOI:10.3390/ijms16011949 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manifera talaris, a voltzian conifer from the late early to middle Permian (ca. 270 Ma) of Texas, is the earliest known conifer to produce winged seeds indicative of autorotating flight. In contrast to autorotating seeds and fruits of extant plants, the ones of M. talaris are exceptional in that they have variable morphology. They bore two wings that produced a range of wing configurations, from seeds with two equal-sized wings to single-winged specimens, via various stages of underdevelopment of one of the wings. To examine the effects of various seed morphologies on aerodynamics and dispersal potential, we studied the flight performance of paper models of three morphotypes: symmetric double-winged, asymmetric double-winged, and single-winged. Using a high-speed camera we identified the mode of descent (plummeting, gliding, autorotation) and quantified descent speed, autorotation frequency, and other flight characteristics. To validate such modeling as an inferential tool, we compared descent of extant analogues (kauri; Agathis australis) with descent of similarly constructed seed models. All three seed morphotypes exhibited autorotating flight behavior. However, double-winged seeds, especially symmetric ones, failed to initiate slow autorotative descent more frequently than singlewinged seeds. Even when autorotating, symmetric double-winged seeds descend faster than asymmetric double-winged ones, and descent is roughly twice as fast compared to single-winged seeds. Moreover, the relative advantage that (effectively) single-winged seeds have in slowing descent during autorotation becomes larger as seed weight increases. Hence, the range in seed wing configurations in M. talaris produced a wide variation in potential dispersal capacity. Overall, our results indicate that the evolutionarily novel autorotating winged seeds must have improved conifer seed dispersal, in a time when animal vectors for dispersion were virtually absent. Because of the range in wing configuration, the early evolution of autorotative flight in conifers was a functionally imperfect one, which provides us insight into the evolutionary developmental biology of autorotative seeds in conifers.
    Paleobiology 03/2015; DOI:10.1017/pab.2014.18 · 2.76 Impact Factor

Full-text (2 Sources)

Download
14 Downloads
Available from
Nov 7, 2014