Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis

Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea.
Arthritis research & therapy (Impact Factor: 4.12). 01/2012; 14(1):R14. DOI: 10.1186/ar3693
Source: PubMed

ABSTRACT Interleukin-34 (IL-34) is a recently defined cytokine, showing a functional overlap with macrophage colony stimulating factor (M-CSF). This study was undertaken to address the expression of IL-34 in rheumatoid arthritis (RA) patients and to investigate its regulation and pathogenic role in RA.
IL-34 levels were determined in the RA synovium, synovial fluid (SF) and fibroblast-like synovial cells (FLS) by immunohistochemistry, real-time PCR, enzyme-linked immunosorbent assay and immunoblotting. RA activity was assessed using Disease Activity Score 28 (DAS28) activity in the plasma collected at baseline and one year after treatment. Conditioned media (CM) were prepared from RA FLS culture with tumor necrosis factor alpha (TNFα) for 24 hours and used for functional assay.
IL-34 was expressed in the synovium, SF, and FLS from RA patients. The production of IL-34 in FLS was up-regulated by TNFα in RA samples compared with osteoarthritis (OA) patients. Importantly, the preferential induction of IL-34 rather than M-CSF by TNFα in RAFLS was mediated by the transcription factor nuclear factor kappa B (NF-κB) and activation of c-Jun N-terminal kinase (JNK). IL-34 elevation in plasma from RA patients was decreased after the administration of disease-modifying anti-rheumatic drugs (DMARDs) in accordance with a decrease in DAS28. CM from RAFLS cultured with TNFα promoted chemotactic migration of human peripheral blood mononuclear cells (PBMCs) and subsequent osteoclast (OC) formation, effects that were attenuated by an anti-IL-34 antibody.
These data provide novel information about the production of IL-34 in RA FLS and indicate that IL-34 is an additional osteoclastogenic factor regulated by TNFα in RA, suggesting a discrete role of IL-34 in inflammatory RA diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Macrophages and synovial fibroblasts (SF) are two major cells implicated in the pathogenesis of rheumatoid arthritis (RA). SF could be a source of cytokines and growth factors driving macrophages survival and activation. Here, we studied the effect of SF on monocyte viability and phenotype. Methods. SF were isolated from synovial tissue of RA patients and CD14+ cells were isolated from peripheral blood of healthy donors. SF conditioned media were collected after 24 hours of culture with or without stimulation with TNFα or IL-1β. Macrophages polarisation was studied by flow cytometry. Results. Conditioned medium from SF significantly increased monocytes viability by 60% compared to CD14+ cells cultured in medium alone (P < 0.001). This effect was enhanced using conditioned media from IL-1β and TNFα stimulated SF. GM-CSF but not M-CSF nor IL34 blocking antibodies was able to significantly decrease monocyte viability by 30% when added to the conditioned media from IL-1β and TNFα stimulated SF (P < 0.001). Finally, monocyte cultured in presence of SF conditioned media did not exhibit a specific M1 or M2 phenotype. Conclusion. Overall, rheumatoid arthritis synovial fibroblasts stimulated with proinflammatory cytokines (IL-1β and TNFα) promote monocyte viability via GM-CSF but do not induce a specific macrophage polarization.
    Mediators of Inflammation 01/2014; 2014:241840. DOI:10.1155/2014/241840 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA). For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis.
    International Journal of Molecular Sciences 01/2014; 16(1):887-906. DOI:10.3390/ijms16010887 · 2.46 Impact Factor
  • The Journal of Rheumatology 03/2015; 42(3):553. DOI:10.3899/jrheum.141405 · 3.17 Impact Factor