Article

A new therapeutic strategy for malaria: targeting T cell exhaustion.

Nature Immunology (Impact Factor: 26.2). 02/2012; 13(2):113-5. DOI:10.1038/ni.2211
Source: PubMed
0 0
 · 
0 Bookmarks
 · 
55 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Functional impairment of antigen-specific T cells is a defining characteristic of many chronic infections, but the underlying mechanisms of T-cell dysfunction are not well understood. To address this question, we analysed genes expressed in functionally impaired virus-specific CD8 T cells present in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), and compared these with the gene profile of functional memory CD8 T cells. Here we report that PD-1 (programmed death 1; also known as Pdcd1) was selectively upregulated by the exhausted T cells, and that in vivo administration of antibodies that blocked the interaction of this inhibitory receptor with its ligand, PD-L1 (also known as B7-H1), enhanced T-cell responses. Notably, we found that even in persistently infected mice that were lacking CD4 T-cell help, blockade of the PD-1/PD-L1 inhibitory pathway had a beneficial effect on the 'helpless' CD8 T cells, restoring their ability to undergo proliferation, secrete cytokines, kill infected cells and decrease viral load. Blockade of the CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitory pathway had no effect on either T-cell function or viral control. These studies identify a specific mechanism of T-cell exhaustion and define a potentially effective immunological strategy for the treatment of chronic viral infections.
    Nature 03/2006; 439(7077):682-7. · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The programmed death (PD)-1-PD-1 ligand (PD-L) pathway, which is part of the B7-CD28 family, consists of the PD-1 receptor and its two ligands PD-L1 and PD-L2. Engagement of PD-1 by its ligands inhibits immune responses, and recent work has shown that PD-1 is highly expressed on exhausted T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Blockade of this pathway reinvigorates the exhausted T cells, allowing them to expand and produce effector cytokines, raising the issue of whether this pathway has been exploited by a variety of viruses during chronic infection. New studies now extend these observations to HIV infection and human disease.
    Journal of Experimental Medicine 01/2006; 203(10):2223-2227. · 13.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Suppression of T-cell responses by host-derived regulatory factors is a key event leading to viral persistence. Antibody blockade of either IL-10 or programmed death-ligand 1 (PD-L1) during viral persistence enhances T-cell function and reduces viral titers. Because blockade of these immunoregulatory networks represents a powerful approach to establish immune control during persistent infection, it is important to determine whether these immunoinhibitory factors act independently or jointly and if combined blockade of these factors further enhances T-cell immunity and viral clearance. Herein, we demonstrate that the IL-10 and PD-L1 immunosuppressive pathways are mechanistically distinct. As a result, simultaneous blockade of IL-10 and PD-L1 was significantly more effective in restoring antiviral T-cell responses than blockade of either alone, and led to substantially enhanced control of an established persistent viral infection. Thus, combinatorial blockade of multiple immune-regulatory molecules may ultimately restore the T-cell responses required to tip the balance from viral persistence to immune-mediated control or elimination of persistent infection.
    Proceedings of the National Academy of Sciences 01/2009; 105(51):20428-33. · 9.74 Impact Factor

Full-text

View
0 Downloads
Available from

Gordon J Freeman