Article

Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid.

Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
Journal of Chemical Ecology (Impact Factor: 2.46). 01/2012; 38(1):100-15. DOI: 10.1007/s10886-012-0065-2
Source: PubMed

ABSTRACT The cabbage aphid Brevicoryne brassicae is a specialist herbivore that sequesters glucosinolates from its host plant as a defense against its predators. It is unknown to what extent parasitoids are affected by this sequestration. We investigated herbivore-mediated effects of glucosinolates on the parasitoid wasp Diaeretiella rapae and the predator Episyrphus balteatus. We reared B. brassicae on three ecotypes of Arabidopsis thaliana that differ in glucosinolate content and on one genetically transformed line with modified concentrations of aliphatic glucosinolates. We tested aphid performance and the performance and behavior of both natural enemies. We correlated this with phloem and aphid glucosinolate concentrations and emission of volatiles. Brevicoryne brassicae performance correlated positively with concentrations of both aliphatic and indole glucosinolates in the phloem. Aphids selectively sequestered glucosinolates. Glucosinolate concentration in B. brassicae correlated negatively with performance of the predator, but positively with performance of the parasitoid, possibly because the aphids with the highest glucosinolate concentrations had a higher body weight. Both natural enemies showed a positive performance-preference correlation. The predator preferred the ecotype with the lowest emission of volatile glucosinolate breakdown products in each test combination, whereas the parasitoid wasp preferred the A. thaliana ecotype with the highest emission of these volatiles. The study shows that there are differential herbivore-mediated effects of glucosinolates on a predator and a parasitoid of a specialist aphid that selectively sequesters glucosinolates from its host plant.

1 Bookmark
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.
    Journal of Chemical Ecology 02/2014; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant secondary metabolites play an important role in mediating interactions with insect herbivores and their natural enemies. Metabolites stored in plant tissues are usually investigated in relation to herbivore behaviour and performance (direct defence), whereas volatile metabolites are often studied in relation to natural enemy attraction (indirect defence). However, so-called direct and indirect defences may also affect the behaviour and performance of the herbivore's natural enemies and the natural enemy's prey or hosts, respectively. This suggests that the distinction between these defence strategies may not be as black and white as is often portrayed in the literature. The ecological costs associated with direct and indirect chemical defence are often poorly understood. Chemical defence traits are often studied in two-species interactions in highly simplified experiments. However, in nature, plants and insects are often engaged in mutualistic interactions with microbes that may also affect plant secondary chemistry. Moreover, plants are challenged by threats above- and belowground and herbivory may have consequences for plant-insect multitrophic interactions in the alternative compartment mediated by changes in plant secondary chemistry. These additional associations further increase the complexity of interaction networks. Consequently, the effect of a putative defence trait may be under- or overestimated when other interactions are not considered.
    Plant Cell and Environment 03/2014; · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica oleracea was reduced on plants that were infested with nematodes (Heterodera schachtii) prior (4 weeks) to aphid infestation. Here, we examined how infection with root-feeding nematodes affected primary and secondary metabolites in the host plant and whether this could explain the increase in aphid doubling time from 3.8 to 6.7 days. We hypothesized that the effects of herbivores on plant metabolites would depend on the presence of the other herbivore and that nematode-induced changes in primary metabolites would correlate with reduced aphid performance. Total glucosinolate concentration in the leaves was not affected by nematode presence, but the composition of glucosinolates shifted, as gluconapin concentrations were reduced, while gluconapoleiferin concentrations increased in plants exposed to nematodes. Aphid presence increased 4-methoxyglucobrassicin concentrations in leaves, which correlated positively with the number of aphids per plant. Nematodes decreased amino acid and sugar concentrations in the phloem. Aphid population doubling time correlated negatively with amino acids and glucosinolate levels in leaves, whereas these correlations were non-significant when nematodes were present. In conclusion, the effects of an herbivore on plant metabolites were independent of the presence of another herbivore. Nematode presence reduced aphid population growth and disturbed feeding relations between plants and aphids.
    Journal of Chemical Ecology 09/2013; · 2.46 Impact Factor

Full-text

View
46 Downloads
Available from
May 30, 2014