Article

Machine Learning classification of MRI features of Alzheimer's disease and mild cognitive impairment subjects to reduce the sample size in clinical trials.

Signal Processing and Multimedia Communications Research Group, School of Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:7957-60. DOI: 10.1109/IEMBS.2011.6091962
Source: PubMed

ABSTRACT There is a need for objective tools to help clinicians to diagnose Alzheimer's Disease (AD) early and accurately and to conduct Clinical Trials (CTs) with fewer patients. Magnetic Resonance Imaging (MRI) is a promising AD biomarker but no single MRI feature is optimal for all disease stages. Machine Learning classification can address these challenges. In this study, we have investigated the classification of MRI features from AD, Mild Cognitive Impairment (MCI), and control subjects from ADNI with four techniques. The highest accuracy rates for the classification of controls against ADs and MCIs were 89.2% and 72.7%, respectively. Moreover, we used the classifiers to select AD and MCI subjects who are most likely to decline for inclusion in hypothetical CTs. Using the hippocampal volume as an outcome measure, we found that the required group sizes for the CTs were reduced from 197 to 117 AD patients and from 366 to 215 MCI subjects.

0 Followers
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.
    Journal of Alzheimer's disease: JAD 04/2014; 41(3). DOI:10.3233/JAD-131928 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, numerous laboratories and consortia have used neuroimaging to evaluate the risk for and progression of Alzheimer's disease (AD). The Alzheimer's Disease Neuroimaging Initiative is a longitudinal, multicenter study that is evaluating a range of biomarkers for use in diagnosis of AD, prediction of patient outcomes, and clinical trials. These biomarkers include brain metrics derived from magnetic resonance imaging (MRI) and positron emission tomography scans as well as metrics derived from blood and cerebrospinal fluid. We focus on Alzheimer's Disease Neuroimaging Initiative studies published between 2011 and March 2013 for which structural MRI was a major outcome measure. Our main goal was to review key articles offering insights into progression of AD and the relationships of structural MRI measures to cognition and to other biomarkers in AD. In Supplement 1, we also discuss genetic and environmental risk factors for AD and exciting new analysis tools for the efficient evaluation of large-scale structural MRI data sets such as the Alzheimer's Disease Neuroimaging Initiative data.
    Biological psychiatry 11/2013; DOI:10.1016/j.biopsych.2013.11.020 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several magnetic resonance techniques have been proposed as non-invasive imaging biomarkers for the evaluation of disease progression and early diagnosis of Alzheimer’s Disease (AD). This work is the first application of the Proton Magnetic Resonance Spectroscopy 1H-MRS data and machine-learning techniques to the classification of AD. A gender-matched cohort of 260 subjects aged between 57 and 99 years from the Alzheimer’s Disease Research Unit, of the Fundación CIEN-Fundación Reina Sofía has been used. A single-layer perceptron was found for AD prediction with only two spectroscopic voxel volumes (Tvol and CSFvol) in the left hippocampus, with an AUROC value of 0.866 (with TPR 0.812 and FPR 0.204) in a filter feature selection approach. These results suggest that knowing the composition of white and grey matter and cerebrospinal fluid of the spectroscopic voxel is essential in a 1H-MRS study to improve the accuracy of the quantifications and classifications, particularly in those studies involving elder patients and neurodegenerative diseases.
    Expert Systems with Applications 03/2015; 42(15-16). DOI:10.1016/j.eswa.2015.03.011 · 1.97 Impact Factor