Performance optimization of ERP-based BCIs using dynamic stopping.

BBCI group of the Machine Learning Department, Berlin Institute of Technology, Berlin, Germany.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:4580-3. DOI: 10.1109/IEMBS.2011.6091134
Source: PubMed

ABSTRACT Brain-computer interfaces based on event-related potentials face a trade-off between the speed and accuracy of the system, as both depend on the number of iterations. Increasing the number of iterations leads to a higher accuracy but reduces the speed of the system. This trade-off is generally dealt with by finding a fixed number of iterations that give a good result on the calibration data. We show here that this method is sub optimal and increases the performance significantly in only one out of five datasets. Several alternative methods have been described in literature, and we test the generalization of four of them. One method, called rank diff, significantly increased the performance over all datasets. These findings are important, as they show that 1) one should be cautious when reporting the potential performance of a BCI based on post-hoc offline performance curves and 2) simple methods are available that do boost performance.

Download full-text


Available from: Johannes Höhne, Jul 03, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.
    Journal of Neural Engineering 01/2015; 12(1):016013. DOI:10.1088/1741-2560/12/1/016013 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P300 spellers provide a noninvasive method of communication for people who may not be able to use other communication aids due to severe neuromuscular disabilities. However, P300 spellers rely on event-related potentials (ERPs) which often have low signal-to-noise ratios (SNRs). In order to improve detection of the ERPs, P300 spellers typically collect multiple measurements of the electroencephalography (EEG) response for each character. The amount of collected data can affect both the accuracy and the communication rate of the speller system. The goal of the present study was to develop an algorithm that would automatically determine the necessary amount of data to collect during operation. Dynamic data collection was controlled by a threshold on the probabilities that each possible character was the target character, and these probabilities were continually updated with each additional measurement. This Bayesian technique differs from other dynamic data collection techniques by relying on a participantindependent, probability-based metric as the stopping criterion. The accuracy and communication rate for dynamic and static data collection in P300 spellers were compared for 26 users. Dynamic data collection resulted in a significant increase in accuracy and communication rate.
    IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 03/2013; DOI:10.1109/TNSRE.2013.2253125 · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.
    IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 03/2013; 21(2):233-43. DOI:10.1109/TNSRE.2013.2243471 · 2.82 Impact Factor