Article

A whole cell assay to measure caspase-6 activity by detecting cleavage of lamin A/C.

Department of Biochemical Pharmacology, Genentech, Inc., South San Francisco, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(1):e30376. DOI: 10.1371/journal.pone.0030376
Source: PubMed

ABSTRACT Caspase-6 is a cysteinyl protease implicated in neurodegenerative conditions including Alzheimer's and Huntington's disease making it an attractive target for therapeutic intervention. A greater understanding of the role of caspase-6 in disease has been hampered by a lack of suitable cellular assays capable of specifically detecting caspase-6 activity in an intact cell environment. This is mainly due to the use of commercially available peptide substrates and inhibitors which lack the required specificity to facilitate development of this type of assay. We report here a 384-well whole-cell chemiluminescent ELISA assay that monitors the proteolytic degradation of endogenously expressed lamin A/C during the early stages of caspase-dependent apoptosis. The specificity of lamin A/C proteolysis by caspase-6 was demonstrated against recombinant caspase family members and further confirmed in genetic deletion studies. In the assay, plasma membrane integrity remained intact as assessed by release of lactate dehydrogenase from the intracellular environment and the exclusion of cell impermeable peptide inhibitors, despite the induction of an apoptotic state. The method described here is a robust tool to support drug discovery efforts targeting caspase-6 and is the first reported to specifically monitor endogenous caspase-6 activity in a cellular context.

0 Bookmarks
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that crushing the optic nerve induces death of retinal ganglion cells by apoptosis, but suppression of CASP2, which is predominantly activated in retinal ganglion cells, using a stably modified short interfering RNA CASP2, inhibits retinal ganglion cell apoptosis. Here, we report that combined delivery of short interfering CASP2 and inhibition of CASP6 using a dominant negative CASP6 mutant activates astrocytes and Müller cells, increases CNTF levels in the retina and leads to enhanced retinal ganglion cell axon regeneration. In dissociated adult rat mixed retinal cultures, dominant negative CASP6 mutant + short interfering CASP2 treatment also significantly increases GFAP(+) glial activation, increases the expression of CNTF in culture, and subsequently increases the number of retinal ganglion cells with neurites and the mean retinal ganglion cell neurite length. These effects are abrogated by the addition of MAB228 (a monoclonal antibody targeted to the gp130 component of the CNTF receptor) and AG490 (an inhibitor of the JAK/STAT pathway downstream of CNTF signalling). Similarly, in the optic nerve crush injury model, MAB228 and AG490 neutralizes dominant negative CASP6 mutant + short interfering CASP2-mediated retinal ganglion cell axon regeneration, Müller cell activation and CNTF production in the retina without affecting retinal ganglion cell survival. We therefore conclude that axon regeneration promoted by suppression of CASP2 and CASP6 is CNTF-dependent and mediated through the JAK/STAT signalling pathway. This study offers insights for the development of effective therapeutics for promoting retinal ganglion cell survival and axon regeneration.
    Brain 04/2014; · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma is the deadliest form of skin cancer. It is highly resistant to conventional therapies, particularly to drugs that cause apoptosis as the main anticancer mechanism. Recently, induction of autophagic cell death is emerging as a novel therapeutic target for apoptotic-resistant cancers. We aimed to investigate the underlying mechanisms elicited by the cytotoxic combination of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyl-uronamide (Cl-IB-MECA, a selective A3 adenosine receptor agonist; 10 μM) and paclitaxel (10 ng/mL) on human C32 and A375 melanoma cell lines. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, neutral red uptake, and lactate dehydrogenase leakage assays, after 48-h incubation. Autophagosome and autolysosome formation was detected by fluorescence through monodansylcadaverine-staining and CellLight(®) Lysosomes-RFP-labelling, respectively. Cell nuclei were visualized by Hoechst staining, while levels of p62 were determined by an ELISA kit. Levels of mammalian target of rapamycin (mTOR) and the alterations of microtubule networks were evaluated by immunofluorescence. We demonstrated, for the first time, that the combination of Cl-IB-MECA with paclitaxel significantly increases cytotoxicity, with apoptosis and autophagy the major mechanisms involved in cell death. Induction of autophagy, using clinically relevant doses, was confirmed by visualization of autophagosome and autolysosome formation, and downregulation of mTOR and p62 levels. Caspase-dependent and caspase-independent mitotic catastrophe evidencing micro- and multinucleation was also observed in cells exposed to our combination. The combination of Cl-IB-MECA and paclitaxel causes significant cytotoxicity on two melanoma cell lines through multiple mechanisms of cell death. This multifactorial hit makes this therapy very promising as it will help to avoid melanoma multiresistance to chemotherapy and therefore potentially improve its treatment.
    Journal of Cancer Research and Clinical Oncology 03/2014; 140(6). · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the caspase family of proteases are evolutionarily conserved cysteine proteases that play a crucial role as the central executioners of the apoptotic pathway. Since the discovery of caspases, many methods have been developed to detect their activation and are widely used in basic and clinical studies. In a mouse tissue, caspase activation can be monitored by cleavage of caspase-specific synthetic substrates and by detecting cleaved caspase by western blot analysis of the tissue extract. In tissue sections, active caspase can be detected by immunostaining using specific antibodies to the active caspase. In addition, among the myriads of caspase-specific substrates known so far, cleaved fragments produced by caspases from the substrates such as PARP, lamin A, and cytokeratin-18 can be monitored in tissue sections by immunostaining as well as western blots of tissue extracts. In general, more than one method should be used to ascertain detection of activation of caspases in a mouse tissue.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1133:141-54. · 1.29 Impact Factor

Full-text (2 Sources)

Download
53 Downloads
Available from
Jun 2, 2014