Article

An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma.

Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(1):e28504. DOI: 10.1371/journal.pone.0028504
Source: PubMed

ABSTRACT In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.

0 Bookmarks
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Increased proliferation of airway smooth muscle (ASM) cells leading to hyperplasia and increased ASM mass is one of the most characteristic features of airway remodelling in asthma. A bioactive lipid, sphingosine-1-phosphate (S1P), has been suggested to affect airway remodelling by stimulation of human ASM cell proliferation.Objective To investigate the effect of S1P on signalling and regulation of gene expression in ASM cells from healthy and asthmatic individuals.MethodsASM cells grown from bronchial biopsies of healthy and asthmatic individuals were exposed to S1P. Gene expression was analysed using microarray, real-time PCR and western blotting. Receptor signalling and function was determined by mRNA knockdown and intracellular calcium mobilisation experiments.ResultsS1P potently regulated the expression of more than 80 genes in human ASM cells, including several genes known to be involved in the regulation of cell proliferation and airway remodelling (HBEGF, TGFB3, TXNIP, PLAUR, SERPINE1, RGS4). S1P acting through S1P2 and S1P3 receptors activated intracellular calcium mobilisation and extracellular signal-regulated and Rho-associated kinases to regulate gene expression. S1P-induced responses were not inhibited by corticosteroids and did not differ significantly between ASM cells from healthy and asthmatic individuals.ConclusionS1P induces a steroid-resistant, pro-remodelling pathway in ASM cells. Targeting S1P or its receptors could be a novel treatment strategy for inhibiting airway remodelling in asthma.This article is protected by copyright. All rights reserved.
    Allergy 07/2014; · 6.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although eosinophilic inflammation typifies allergic asthma, it is not a prerequisite for airway hyperresponsiveness (AHR), suggesting that underlying abnormalities in structural cells, such as airway smooth muscle (ASM), contribute to the asthmatic diathesis. Dysregulation of procontractile G protein-coupled receptor (GPCR) signaling in ASM could mediate enhanced contractility. We explored the role of a regulator of procontractile GPCR signaling, regulator of G protein signaling 5 (RGS5), in unprovoked and allergen-induced AHR. We evaluated GPCR-evoked Ca(2+) signaling, precision-cut lung slice (PCLS) contraction, and lung inflammation in naive and Aspergillus fumigatus-challenged wild-type and Rgs5(-/-) mice. We analyzed lung resistance and dynamic compliance in live anesthetized mice using invasive plethysmography. Loss of RGS5 promoted constitutive AHR because of enhanced GPCR-induced Ca(2+) mobilization in ASM. PCLSs from naive Rgs5(-/-) mice contracted maximally at baseline independently of allergen challenge. RGS5 deficiency had little effect on the parameters of allergic inflammation, including cell counts in bronchoalveolar lavage fluid, mucin production, ASM mass, and subepithelial collagen deposition. Unexpectedly, induced IL-13 and IL-33 levels were much lower in challenged lungs from Rgs5(-/-) mice relative to those seen in wild-type mice. Loss of RGS5 confers spontaneous AHR in mice in the absence of allergic inflammation. Because it is selectively expressed in ASM within the lung and does not promote inflammation, RGS5 might be a therapeutic target for asthma.
    The Journal of allergy and clinical immunology 03/2014; · 12.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features including 1) [Ca(2+)]i, contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types such as epithelium, fibroblasts and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening and fibrosis that influences compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard, and helps set the stage for future research towards understanding the pathways regulating ASM, and in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, COPD and pulmonary fibrosis.
    AJP Lung Cellular and Molecular Physiology 10/2013; · 3.52 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
May 28, 2014