Differential network biology.

Departments of Medicine and Bioengineering, University of California San Diego, La Jolla, CA, USA.
Molecular Systems Biology (Impact Factor: 14.1). 01/2012; 8:565. DOI: 10.1038/msb.2011.99
Source: PubMed

ABSTRACT Protein and genetic interaction maps can reveal the overall physical and functional landscape of a biological system. To date, these interaction maps have typically been generated under a single condition, even though biological systems undergo differential change that is dependent on environment, tissue type, disease state, development or speciation. Several recent interaction mapping studies have demonstrated the power of differential analysis for elucidating fundamental biological responses, revealing that the architecture of an interactome can be massively re-wired during a cellular or adaptive response. Here, we review the technological developments and experimental designs that have enabled differential network mapping at very large scales and highlight biological insight that has been derived from this type of analysis. We argue that differential network mapping, which allows for the interrogation of previously unexplored interaction spaces, will become a standard mode of network analysis in the future, just as differential gene expression and protein phosphorylation studies are already pervasive in genomic and proteomic analysis.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Several studies have revealed a potential role for both small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) in the physiopathology of relapsing-remitting multiple sclerosis (RRMS). This potential implication has been mainly described through differential expression studies. However, it has been suggested that, in order to extract additional information from large-scale expression experiments, differential expression studies must be complemented with differential network studies. Thus, the present work is aimed at the identification of potential therapeutic ncRNA targets for RRMS through differential network analysis of ncRNA – mRNA coexpression networks. ncRNA – mRNA coexpression networks have been constructed from both selected ncRNA (specifically miRNAs, snoRNAs and sdRNAs) and mRNA large-scale expression data obtained from 22 patients in relapse, the same 22 patients in remission and 22 healthy controls. Condition-specific (relapse, remission and healthy) networks have been built and compared to identify the parts of the system most affected by perturbation and aid the identification of potential therapeutic targets among the ncRNAs. Results All the coexpression networks we built present a scale-free topology and many snoRNAs are shown to have a prominent role in their architecture. The differential network analysis (relapse vs. remission vs. controls’ networks) has revealed that, although both network topology and the majority of the genes are maintained, few ncRNA – mRNA links appear in more than one network. We have selected as potential therapeutic targets the ncRNAs that appear in the disease-specific network and were found to be differentially expressed in a previous study. Conclusions Our results suggest that the diseased state of RRMS has a strong impact on the ncRNA – mRNA network of peripheral blood leukocytes, as a massive rewiring of the network happens between conditions. Our findings also indicate that the role snoRNAs have in targeted gene silencing is a widespread phenomenon. Finally, among the potential therapeutic target ncRNAs, SNORA40 seems to be the most promising candidate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1396-5) contains supplementary material, which is available to authorized users.
    BMC Genomics 03/2015; 16(1). DOI:10.1186/s12864-015-1396-5 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This document is used in presential courses and regularly updated. Related files can be found in

Full-text (2 Sources)

Available from
May 29, 2014