Article

Differential network biology.

Departments of Medicine and Bioengineering, University of California San Diego, La Jolla, CA, USA.
Molecular Systems Biology (Impact Factor: 14.1). 01/2012; 8:565. DOI: 10.1038/msb.2011.99
Source: PubMed

ABSTRACT Protein and genetic interaction maps can reveal the overall physical and functional landscape of a biological system. To date, these interaction maps have typically been generated under a single condition, even though biological systems undergo differential change that is dependent on environment, tissue type, disease state, development or speciation. Several recent interaction mapping studies have demonstrated the power of differential analysis for elucidating fundamental biological responses, revealing that the architecture of an interactome can be massively re-wired during a cellular or adaptive response. Here, we review the technological developments and experimental designs that have enabled differential network mapping at very large scales and highlight biological insight that has been derived from this type of analysis. We argue that differential network mapping, which allows for the interrogation of previously unexplored interaction spaces, will become a standard mode of network analysis in the future, just as differential gene expression and protein phosphorylation studies are already pervasive in genomic and proteomic analysis.

Full-text

Available from: Nevan Krogan, Dec 25, 2013
1 Follower
 · 
228 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphical models are widely used to study biological networks. Interventions on network nodes are an important feature of many experimental designs for the study of biological networks. In this paper, we put forward a causal variant of dynamic Bayesian networks (DBNs) for the purpose of modeling time-course data with interventions. The models inherit the simplicity and computational efficiency of DBNs but allow interventional data to be integrated into network inference. We show empirical results, on both simulated and experimental data, that demonstrate the need to appropriately handle interventions when interventions form part of the design.
    The Annals of Applied Statistics 04/2015; 9(1). DOI:10.1214/15-AOAS806 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Several studies have revealed a potential role for both small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) in the physiopathology of relapsing-remitting multiple sclerosis (RRMS). This potential implication has been mainly described through differential expression studies. However, it has been suggested that, in order to extract additional information from large-scale expression experiments, differential expression studies must be complemented with differential network studies. Thus, the present work is aimed at the identification of potential therapeutic ncRNA targets for RRMS through differential network analysis of ncRNA – mRNA coexpression networks. ncRNA – mRNA coexpression networks have been constructed from both selected ncRNA (specifically miRNAs, snoRNAs and sdRNAs) and mRNA large-scale expression data obtained from 22 patients in relapse, the same 22 patients in remission and 22 healthy controls. Condition-specific (relapse, remission and healthy) networks have been built and compared to identify the parts of the system most affected by perturbation and aid the identification of potential therapeutic targets among the ncRNAs. Results All the coexpression networks we built present a scale-free topology and many snoRNAs are shown to have a prominent role in their architecture. The differential network analysis (relapse vs. remission vs. controls’ networks) has revealed that, although both network topology and the majority of the genes are maintained, few ncRNA – mRNA links appear in more than one network. We have selected as potential therapeutic targets the ncRNAs that appear in the disease-specific network and were found to be differentially expressed in a previous study. Conclusions Our results suggest that the diseased state of RRMS has a strong impact on the ncRNA – mRNA network of peripheral blood leukocytes, as a massive rewiring of the network happens between conditions. Our findings also indicate that the role snoRNAs have in targeted gene silencing is a widespread phenomenon. Finally, among the potential therapeutic target ncRNAs, SNORA40 seems to be the most promising candidate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1396-5) contains supplementary material, which is available to authorized users.
    BMC Genomics 03/2015; 16(1). DOI:10.1186/s12864-015-1396-5 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of rewired upstream subnetworks impacting downstream differential gene expression aids the delineation of evolving molecular mechanisms. Cumulative statistics based on conventional differential correlation are limited for subnetwork rewiring analysis since rewiring is not necessarily equivalent to change in correlation coefficients. Here we present a computational method ChiNet to quantify subnetwork rewiring by statistical heterogeneity that enables detection of potential genotype changes causing altered transcription regulation in evolving organisms. Given a differentially expressed downstream gene set, ChiNet backtracks a rewired upstream subnetwork from a super-network including gene interactions known to occur under various molecular contexts. We benchmarked ChiNet for its high accuracy in distinguishing rewired artificial subnetworks, in silico yeast transcription-metabolic subnetworks, and rewired transcription subnetworks for Candida albicans versus Saccharomyces cerevisiae, against two differential-correlation based subnetwork rewiring approaches. Then, using transcriptome data from tolerant S. cerevisiae strain NRRL Y-50049 and a wild-type intolerant strain, ChiNet identified 44 metabolic pathways affected by rewired transcription subnetworks anchored to major adaptively activated transcription factor genes YAP1, RPN4, SFP1 and ROX1, in response to toxic chemical challenges involved in lignocellulose-to-biofuels conversion. These findings support the use of ChiNet in rewiring analysis of subnetworks where differential interaction patterns resulting from divergent nonlinear dynamics abound. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 04/2015; DOI:10.1093/nar/gkv358 · 8.81 Impact Factor