Membrane proteomic analysis comparing squamous cell lung cancer tissue and tumour-adjacent normal tissue.

Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi Province, People's Republic of China.
Cancer letters (Impact Factor: 5.02). 01/2012; 319(1):118-24. DOI: 10.1016/j.canlet.2011.12.037
Source: PubMed

ABSTRACT Lung cancer is the leading cause of cancer-related deaths worldwide. Squamous cell carcinoma is one of the predominant histological subtypes of lung cancer. Detecting lung cancer at an early stage is essential for successful therapy and increasing survival. There are still no satisfactory biomarkers for the early detection of lung cancer. In this study, tumour tissue paired with tumour-adjacent normal bronchial epithelial tissue was obtained from patients with squamous cell lung carcinoma without metastasis. The proteins extracted from the cell membrane were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE) and were analysed with the Image Master two-dimensional platinum software. Twenty-five significantly different protein spots were selected and identified with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). A total of 19 proteins were successfully identified. Twelve proteins were up-regulated, and seven proteins were down-regulated in the cancerous tissue compared with the tumour-adjacent normal tissue. One up-regulated protein and one down-regulated protein in squamous cell lung carcinoma were verified by Western blot analysis and RT-PCR; the results were consistent with the 2-DE analysis. In conclusion, membrane proteomics identified a number of candidate biomarker proteins that were differentially expressed between squamous cell lung cancer tissue and adjacent normal tissue. These biomarker candidates have the potential to elucidate the underlying pathogenesis of squamous cell lung cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small, noncoding RNAs with important functions in development, cell differentiation, and regulation of cell cycle and apoptosis. Many studies have now shown that miRNAs are involved in the initiation and progression of cancers. In this study, procedures based on the relative R-squared method (RRSM) are proposed to investigate miRNA-mRNA regulatory relationships between 114 miRNAs and 16063 mRNAs for different organic tissues. These procedures are based on comparing the expression profiles in tumor tissue and those in normal tissues, or based on the expression profiles in tumor tissue only. The analyzed results are used to predict high-confident miRNAs for tumor development and their targets. This study predicts many high-confident miRNAs which are associated with colon cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer and kidney cancer, respectively.
    Current Pharmaceutical Biotechnology 05/2014; DOI:10.2174/1389201015666140519121255 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1alpha that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.
    BMC Complementary and Alternative Medicine 10/2013; 13(1):271. DOI:10.1186/1472-6882-13-271 · 1.88 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung adenocarcinoma, the most common type of lung cancer, has increased in recent years. Prognosis is still poor, and pathogenesis remains unclear. This study aimed to investigate the membrane protein profile differences between lung adenocarcinoma and normal tissue. Manual microdissection was used to isolate the target cells from tumor tissue and normal tissue. iTRAQ labeling combined with 2D-LC-MS/MS yielded a differential expression profile of membrane proteins. Bioinformatic analysis was performed using Gene Ontology, WEGO, PID, and KEGG. S100A14 protein was selectively verified by Western blotting. The relationship of S100A14 expression with clinicopathological features in lung cancer patients was evaluated using immunohistochemistry. As a result, 568 differential proteins were identified; 257 proteins were upregulated and 311 were downregulated. Of these proteins, 48% were found to be membrane bound or membrane associated. These proteins enable the physiological functions of binding, catalysis, molecular transduction, transport, and molecular structure. For these differential proteins, 35 pathways were significantly enriched through the Pathway Interaction Database, whereas 19 pathways were enriched via KEGG. The overexpression and cellular distribution of S100A14 in lung cancer were confirmed. We found that upregulation of S100A14 was associated with well or moderate differentiation. The iTRAQ-coupled 2D-LC-MS/MS technique is a potential method for comparing membrane protein profiles between tumor and normal tissue. Such analysis may also help in identifying novel biomarkers and the mechanisms underlying carcinogenesis.
    American Journal of Translational Research 01/2014; 6(3):267-80. · 3.23 Impact Factor