Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana.

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
The Plant Journal (Impact Factor: 6.58). 01/2012; 70(6):929-39. DOI: 10.1111/j.1365-313X.2012.04907.x
Source: PubMed

ABSTRACT Seed size in higher plants is coordinately determined by the growth of the embryo, endosperm and maternal tissue, but relatively little is known about the genetic and molecular mechanisms that set final seed size. We have previously demonstrated that Arabidopsis DA1 acts maternally to control seed size, with the da1-1 mutant producing larger seeds than the wild type. Through an activation tagging screen for modifiers of da1-1, we have identified an enhancer of da1-1 (eod3-1D) in seed size. EOD3 encodes the Arabidopsis cytochrome P450/CYP78A6 and is expressed in most plant organs. Overexpression of EOD3 dramatically increases the seed size of wild-type plants, whereas eod3-ko loss-of-function mutants form small seeds. The disruption of CYP78A9, the most closely related family member, synergistically enhances the seed size phenotype of eod3-ko mutants, indicating that EOD3 functions redundantly with CYP78A9 to affect seed growth. Reciprocal cross experiments show that EOD3 acts maternally to promote seed growth. eod3-ko cyp78a9-ko double mutants have smaller cells in the maternal integuments of developing seeds, whereas eod3-1D forms more and larger cells in the integuments. Genetic analyses suggest that EOD3 functions independently of maternal factors DA1 and TTG2 to influence seed growth. Collectively, our findings identify EOD3 as a factor of seed size control, and give insight into how plants control their seed size.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rice PLASTOCHRON (PLA) genes PLA1 and PLA2 regulate leaf maturation and the temporal pattern of leaf initiation. Although the function of PLA genes in the leaf initiation process has been analyzed, little is known about how they affect leaf growth. Previously, we suggested that PLA1 and PLA2 function downstream of the gibberellin (GA) signal transduction pathway. In the present study, we examined the phenotype of a double mutant of pla and slender rice 1 (slr1), which is a constitutive GA response mutant. By analyzing these double mutants, we discuss the relationship between PLA-related and GA-dependent pathways and the possible function of PLA genes in leaf growth.
    Rice (New York, N.Y.). 01/2014; 7(1):25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.
    TheScientificWorldJournal. 01/2014; 2014:468036.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among angiosperms there is a high degree of variation in embryo/endosperm size in mature seeds. However, little is known about the molecular mechanism underlying size control between these neighboring tissues. Here we report the rice GIANT EMBRYO (GE) gene that is essential for controlling the size balance. The function of GE in each tissue is distinct, controlling cell size in the embryo and cell death in the endosperm. GE, which encodes CYP78A13, is predominantly expressed in the interfacing tissues of the both embryo and endosperm. GE expression is under negative feedback regulation; endogenous GE expression is upregulated in ge mutants. In contrast to the loss-of-function mutant with large embryo and small endosperm, GE overexpression causes a small embryo and enlarged endosperm. A complementation analysis coupled with heterofertilization showed that complementation of ge mutation in either embryo or endosperm failed to restore the wild-type embryo/endosperm ratio. Thus, embryo and endosperm interact in determining embryo/endosperm size balance. Among genes associated with embryo/endosperm size, REDUCED EMBRYO genes, whose loss-of-function causes a phenotype opposite to ge, are revealed to regulate endosperm size upstream of GE. To fully understand the embryo–endosperm size control, the genetic network of the related genes should be elucidated.
    The Plant Journal 08/2013; 75(4). · 6.58 Impact Factor


1 Download