Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
The Plant Journal (Impact Factor: 6.82). 01/2012; 70(6):929-39. DOI: 10.1111/j.1365-313X.2012.04907.x
Source: PubMed

ABSTRACT Seed size in higher plants is coordinately determined by the growth of the embryo, endosperm and maternal tissue, but relatively little is known about the genetic and molecular mechanisms that set final seed size. We have previously demonstrated that Arabidopsis DA1 acts maternally to control seed size, with the da1-1 mutant producing larger seeds than the wild type. Through an activation tagging screen for modifiers of da1-1, we have identified an enhancer of da1-1 (eod3-1D) in seed size. EOD3 encodes the Arabidopsis cytochrome P450/CYP78A6 and is expressed in most plant organs. Overexpression of EOD3 dramatically increases the seed size of wild-type plants, whereas eod3-ko loss-of-function mutants form small seeds. The disruption of CYP78A9, the most closely related family member, synergistically enhances the seed size phenotype of eod3-ko mutants, indicating that EOD3 functions redundantly with CYP78A9 to affect seed growth. Reciprocal cross experiments show that EOD3 acts maternally to promote seed growth. eod3-ko cyp78a9-ko double mutants have smaller cells in the maternal integuments of developing seeds, whereas eod3-1D forms more and larger cells in the integuments. Genetic analyses suggest that EOD3 functions independently of maternal factors DA1 and TTG2 to influence seed growth. Collectively, our findings identify EOD3 as a factor of seed size control, and give insight into how plants control their seed size.


Available from: Wenjuan Fang, Mar 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although seed size is one of the most important agronomic traits in plants, the genetic and molecular mechanisms that set the final size of seeds are largely unknown. We previously identified the ubiquitin receptor DA1 as a negative regulator of seed size, and the Arabidopsis thaliana da1-1 mutant produces larger seeds than the wild type. Here, we describe a B3 domain transcriptional repressor NGATHA-like protein (NGAL2), encoded by the suppressor of da1-1 (SOD7), which acts maternally to regulate seed size by restricting cell proliferation in the integuments of ovules and developing seeds. Overexpression of SOD7 significantly decreases seed size of wild-type plants, while the simultaneous disruption of SOD7 and its closest homolog DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4/NGAL3) increases seed size. Genetic analyses indicate that SOD7 and DPA4 act in a common pathway with the seed size regulator KLU to regulate seed growth, but do so independently of DA1. Further results show that SOD7 directly binds to the promoter of KLUH (KLU) in vitro and in vivo and represses the expression of KLU. Therefore, our findings reveal the genetic and molecular mechanisms of SOD7, DPA4, and KLU in seed size regulation and suggest that they are promising targets for seed size improvement in crops. © 2015 American Society of Plant Biologists. All rights reserved.
    The Plant Cell 03/2015; 27(3). DOI:10.1105/tpc.114.135368 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome-wide transcriptional response of the model organism Arabidopsis thaliana to cytokinin has been investigated by different research groups as soon as large-scale transcriptomic techniques became affordable. Over the last 10 years many transcriptomic datasets related to cytokinin have been generated using different technological platforms, some of which are published only in databases, culminating in an RNA sequencing experiment. Two approaches have been made to establish a core set of cytokinin-regulated transcripts by meta-analysis of these datasets using different preferences regarding their selection. Here we add another meta-analysis derived from an independent microarray platform (CATMA), combine all the meta-analyses available with RNAseq data in order to establish an advanced core set of cytokinin-regulated transcripts, and compare the results with the regulation of orthologous rice genes by cytokinin. We discuss the functions of some of the less known cytokinin-regulated genes indicating areas deserving further research to explore cytokinin function. Finally, we investigate the promoters of the core set of cytokinin-induced genes for the abundance and distribution of known cytokinin-responsive cis elements and identify a set of novel candidate motifs.
    Frontiers in Plant Science 02/2015; 6:29. DOI:10.3389/fpls.2015.00029 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overview of seed size control. Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed coat, the endosperm and the embryo, as well as their interplay, have been described in Arabidopsis thaliana. In this review, we provide a comprehensive description of the current knowledge regarding the molecular mechanisms controlling seed size in Arabidopsis.
    02/2015; 28(1). DOI:10.1007/s00497-015-0255-5