Effect of fly ash on sorption behavior of metribuzin in agricultural soils.

Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India.
Journal of Environmental Science and Health Part B (Impact Factor: 1.23). 02/2012; 47(2):89-98. DOI: 10.1080/03601234.2012.616767
Source: PubMed

ABSTRACT This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15-92%, whereas with the Kota fly ash an increase in sorption by 13-38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to K(f)/K(d) values, K(FA) values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.
    Journal of Environmental Science and Health Part B 01/2013; 48(7):587-92. · 1.23 Impact Factor