MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition.

Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Oncogene (Impact Factor: 8.56). 01/2012; 31(41):4434-46. DOI: 10.1038/onc.2011.617
Source: PubMed

ABSTRACT Trastuzumab (Herceptin) resistance is a major obstacle in the treatment of patients with HER2-positive breast cancers. We recently reported that the transcription factor Y-box binding protein-1 (YB-1) leads to acquisition of resistance to trastuzumab in a phosphorylation-dependent manner that relies on p90 ribosomal S6 kinase (RSK). To explore how this may occur we compared YB-1 target genes between trastuzumab-sensitive cells (BT474) and those with acquired resistance (HR5 and HR6) using genome-wide chromatin immunoprecipitation sequencing (ChIP-sequencing), which identified 1391 genes uniquely bound by YB-1 in the resistant cell lines. We then examined differences in protein expression and phosphorylation between these cell lines using the Kinexus Kinex antibody microarrays. Cross-referencing these two data sets identified the mitogen-activated protein kinase-interacting kinase (MNK) family as potentially being involved in acquired resistance downstream from YB-1. MNK1 and MNK2 were subsequently shown to be overexpressed in the resistant cell lines; however, only the former was a YB-1 target based on ChIP-PCR and small interfering RNA (siRNA) studies. Importantly, loss of MNK1 expression using siRNA enhanced sensitivity to trastuzumab. Further, MNK1 overexpression was sufficient to confer resistance to trastuzumab in cells that were previously sensitive. We then developed a de novo model of acquired resistance by exposing BT474 cells to trastuzumab for 60 days (BT474LT). Similar to the HR5/HR6 cells, the BT474LT cells had elevated MNK1 levels and were dependent on it for survival. In addition, we demonstrated that RSK phosphorylated MNK1, and that this phosphorylation was required for ability of MNK1 to mediate resistance to trastuzumab. Furthermore, inhibition of RSK with the small molecule BI-D1870 repressed the MNK1-mediated trastuzumab resistance. In conclusion, this unbiased integrated approach identified MNK1 as a player in mediating trastuzumab resistance as a consequence of YB-1 activation, and demonstrated RSK inhibition as a means to overcome recalcitrance to trastuzumab.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Y-box binding protein-1 (YB-1), a member of cold-shock protein superfamily, has been demonstrated to be associated with tumor malignancy, and is proposed as a prognostic marker in multiple carcinomas. However, the role of YB-1 in neuroblastoma has not been well studied. To investigate the functional role of YB-1 in neuroblastoma, we established a YB-1-silenced neuroblastoma cell strain by inhibiting YB-1 expression using a shRNA knockdown approach. YB-1-silenced neuroblastoma SH-SY5Y cells exhibited a pronounced reduction in cell proliferation and an increased rate of apoptosis in vitro and in vivo xenograft tumor model. At molecular level, YB-1 silencing resulted in downregulation of Cyclin A, Cyclin D1 and Bcl-2, as well as upregulated levels of Bax, cleaved caspase-3 and cleaved PARP-1. We further demonstrated that YB-1 transcriptionally regulated Cyclin D1 expression by chromatin-immunoprecipitation and luciferase reporter assays. In addition, xenograft tumors derived from neuroblastoma SH-SY5Y cell line were treated with YB-1 shRNA plasmids by intra-tumor injection, and YB-1 targeting effectively inhibited tumor growth and induced cell death. In summary, our findings suggest that YB-1 plays a critical role in neuroblastoma development, and it may serve as a potential target for neuroblastoma therapy.
    PLoS ONE 05/2015; 10(5):e0127224. DOI:10.1371/journal.pone.0127224 · 3.53 Impact Factor
  • Source
    Oncogene 11/2012; 32(35). DOI:10.1038/onc.2012.521 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor rare throughout most of the world but common in Southeast Asia, especially in Southern China. The phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) by MAP kinase-interacting kinases (Mnk) on Ser-209 promotes cellular proliferation, survival, malignant transformation and metastasis. However, whether the alterations of the expression of p-eIF4E and p-Mnk1 protein are associated with clinicopathologic/prognostic implication for NPC has not been reported. The purposes of the present study are to examine the expression of p-eIF4E and p-Mnk1 protein in NPC and non-cancerous nasopharyngeal epithelial tissues by immunohistochemistry and evaluate the association between the expression of p-eIF4E and p-Mnk1 protein and clinicopathological characteristics of NPC. The results showed that the positive percentage of p-Mnk1 and p-eIF4E proteins expression in NPC (83.5% and 75.4%, respectively) was significantly higher than that in non-cancerous nasopharyngeal epithelium (40.0% and 32.9%, respectively). The positive expression of p-eIF4E and p-Mnk1 in the NPC with cervical lymph node metastasis was significantly higher than those without lymph node metastasis. Additionally, p-eIF4E expression was more pronouncedly increased in metastatic NPC than the matched primary NPC. Increase of p-eIF4E and p-Mnk1 expression was significantly correlated inversely with overall survival. Spearman's rank correlation test further showed that expression of p-Mnk1 was strongly positive correlated with expression of p-eIF4E in NPC. The expression of p-Mnk1 and p-eIF4E in NPC was proved to be the independent prognostic factors regardless of lymph node metastasis, clinical stages and combination of radiotherapy and chemotherapy, histological type, age and gender by multivariate analysis. Taken together, high expression of p-Mnk1 and p-eIF4E might be novel valuable biomarkers to predict poor prognosis of NPC and therapeutic targets for developing the valid treatment strategies.
    PLoS ONE 02/2014; 9(2):e89220. DOI:10.1371/journal.pone.0089220 · 3.53 Impact Factor