Article

Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155.

Division of Pediatrics, University of Texas-MD Anderson Cancer Center, Houston, TX, USA.
Oncogene (Impact Factor: 8.56). 01/2012; 31(37):4085-94. DOI: 10.1038/onc.2011.579
Source: PubMed

ABSTRACT The myelodysplastic syndromes (MDSs) comprise a group of disorders characterized by multistage progression from cytopenias to acute myeloid leukemia (AML). They display exaggerated apoptosis in early stages, but lose this behavior during evolution to AML. The molecular basis for loss of apoptosis is unknown. To investigate this critical event, we analyzed phosphatidylinositol (PI) 3'kinase signaling, implicated as a critical pathway of cell survival control in epithelial and hematological malignancies. PI 3'kinase activates Akt through its production of 3' phosphoinositides. In turn, the phosphoinositides are dephosphorylated by two lipid phosphatases, PTEN and SHIP-1, in myeloid cells. We studied primary MDS-enriched bone marrow cells and bone marrow sections by western blotting, immunohistochemistry, immunocytochemistry and quantitative PCR for components of the SHIP/PTEN/PI 3'kinase signaling circuit. We reported constitutively activated Akt, variable levels of PTEN and uniformly decreased SHIP-1 expression in MDS progenitor cells. Overexpression of SHIP-1, but not the phosphatase-deficient form, inhibited myeloid leukemic growth. Levels of microRNA (miR)-210 and miR-155 transcripts, which target SHIP-1, were increased in CD34(+) MDS cells compared with their normal counterparts. Direct binding of miR-210 to the 3' untranslated region of SHIP-1 was confirmed by luciferase reporter assay. Transfection of a myeloid cell line with miR-210 resulted in loss of SHIP-1 protein expression. These data suggest that miR-155 and miR-210/SHIP-1/Akt pathways could serve as clinical biomarkers for disease progression, and that miR-155 and miR-210 might serve as novel therapeutic targets in MDS.

3 Followers
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide signaling regulates diverse cellular functions. Phosphoinositide-3 kinase (PI3K) generates PtdIns(3,4,5)P3 and PtdIns(3,4)P2, leading to the activation of proliferative and anti-apoptotic signaling pathways. Termination of phosphoinositide signaling requires hydrolysis of inositol ring phosphate groups through the actions of PtdIns(3,4,5)P3 3-phosphatase (PTEN), PtdIns(3,4,5)P3 5-phosphatases (e.g. SHIP) and PtdIns(3,4)P2 4-phosphatases (e.g. INPP4B). The biological relevance of most of these phosphoinositide phosphatases in acute myeloid leukemia (AML) remains poorly understood. Mass-spectrometry based gene expression profiling of 3-, 4- and 5-phosphatases in human AML revealed significant overexpression of INPP4B. Analysis of an expanded panel of 205 AML cases at diagnosis revealed INPP4B overexpression in association with reduced responses to chemotherapy, early relapse and poor overall survival independent of other risk factors. Ectopic overexpression of INPP4B conferred leukemic resistance to cytosine arabinoside (ara-C), daunorubicin and etoposide. Expression of a phosphatase inert variant (INPP4B C842A) failed to abrogate resistance of AML cells to chemotherapy in vitro or in vivo. In contrast, targeted suppression of endogenously overexpressed INPP4B by RNAi sensitized AML cell lines and primary AML to chemotherapy. These findings demonstrate a previously unsuspected and clinically relevant role for INPP4B gain-of-function as a mediator of chemoresistance and poor survival outcome in AML independent of its phosphoinositide phosphatase function. Copyright © 2015 American Society of Hematology.
    Blood 03/2015; DOI:10.1182/blood-2014-09-603555 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is a key component of the tumor microenvironment and represents a well-documented source of therapeutic failure in clinical oncology. Recent work has provided support to the idea that noncoding RNAs (ncRNAs), and in particular microRNAs (miRNAs), may play important roles in the adaptive response to low oxygen in tumors. Specifically, all published studies agree that the induction of microRNA-210 (miR-210) is a consistent feature of the hypoxic response in both normal and transformed cells. miR-210 is a robust target of hypoxia-inducible factor (HIF), and its overexpression has been detected in a variety of diseases with a hypoxic component, including most solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic signature and to adverse prognosis in breast and pancreatic cancer patients. A wide variety of miR-210 targets have been identified, pointing to roles in mitochondrial metabolism, angiogenesis, differentiation, DNA damage response, and cell survival. Such targets are suspected to affect the development of tumors in multiple ways; therefore, an increased knowledge about miR-210’s actions may lead to novel diagnostic and therapeutic approaches in the cancer field.
    Hypoxia and Cancer: Biological Implications and Therapeutic Opportunities in Cancer Drug Discovery and Development Series, Edited by Giovanni Melillo, 01/2014: chapter 3: pages 43-64; Springer New York., ISBN: 978-1-4614-9166-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase family whose members have been implicated in tumor suppression in many cancer models. In many cancers, loss of PP2A activity has been associated with tumorigenesis and drug resistance. Loss of PP2A results in failure to turn off survival signaling cascades that drive drug resistance such as those regulated by protein kinase B. PP2A is responsible for modulating function and controlling expression of tumor suppressors such as p53 and oncogenes such as BCL2 and MYC. Thus, PP2A has diverse functions regulating cell survival. The importance of microRNAs (miRs) is emerging in cancer biology. A role for miR regulation of PP2A is not well understood; however, recent studies suggest a number of clinically significant miRs such as miR-155 and miR-19 may include PP2A targets. We have recently found that a PP2A B subunit (B55α) can regulate a number of miRs in acute myeloid leukemia cells. The identification of a miR/PP2A axis represents a novel regulatory pathway in cellular homeostasis. The ability of miRs to suppress specific PP2A targets and for PP2A to control such miRs can add an extra level of control in signaling that could be used as a rheostat for many signaling cascades that maintain cellular homeostasis. As such, loss of PP2A or expression of miRs relevant for PP2A function could promote tumorigenesis or at least result in drug resistance. In this review, we will cover the current state of miR regulation of PP2A with a focus on leukemia. We will also briefly discuss what is known of PP2A regulation of miR expression.
    Frontiers in Oncology 02/2015; 5:43. DOI:10.3389/fonc.2015.00043