Human genome sequencing in health and disease.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
Annual review of medicine (Impact Factor: 9.94). 02/2012; 63:35-61. DOI: 10.1146/annurev-med-051010-162644
Source: PubMed

ABSTRACT Following the "finished," euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges.

  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.
    PLoS ONE 10(2):e0116454. DOI:10.1371/journal.pone.0116454 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Classically defined phenotypically by a triad of cerebellar ataxia, parkinsonism, and autonomic dysfunction in conjunction with pyramidal signs, multiple system atrophy (MSA) is a rare and progressive neurodegenerative disease affecting an estimated 3-4 per every 100,000 individuals among adults 50-99 years of age. With a pathological hallmark of alpha-synuclein-immunoreactive glial cytoplasmic inclusions (GCIs; Papp-Lantos inclusions), MSA patients exhibit marked neurodegenerative changes in the striatonigral and/or olivopontocerebellar structures of the brain. As a member of the alpha-synucleinopathy family, which is defined by its well-demarcated alpha-synuclein-immunoreactive inclusions and aggregation, MSA's clinical presentation exhibits several overlapping features with other members including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Given the extensive fund of knowledge regarding the genetic etiology of PD revealed within the past several years, a genetic investigation of MSA is warranted. While a current genome-wide association study is underway for MSA to further clarify the role of associated genetic loci and single-nucleotide polymorphisms, several cases have presented solid preliminary evidence of a genetic etiology. Naturally, genes and variants manifesting known associations with PD (and other phenotypically similar neurodegenerative disorders), including SNCA and MAPT, have been comprehensively investigated in MSA patient cohorts. More recently variants in COQ2 have been linked to MSA in the Japanese population although this finding awaits replication. Nonetheless, significant positive associations with subsequent independent replication studies have been scarce. With very limited information regarding genetic mutations or alterations in gene dosage as a cause of MSA, the search for novel risk genes, which may be in the form of common variants or rare variants, is the logical nexus for MSA research. We believe that the application of next generation genetic methods to MSA will provide valuable insight into the underlying causes of this disease, and will be central to the identification of etiologic-based therapies.
    Clinical Autonomic Research 02/2015; DOI:10.1007/s10286-014-0267-5 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This workshop reviewed the current science to inform and recommend the best evidence-based approaches on the use of germ cell genotoxicity tests. The workshop questions and key outcomes were as follows. (1) Do genotoxicity and mutagenicity assays in somatic cells predict germ cell effects? Limited data suggest that somatic cell tests detect most germ cell mutagens, but there are strong concerns that dictate caution in drawing conclusions. (2) Should germ cell tests be done, and when? If there is evidence that a chemical or its metabolite(s) will not reach target germ cells or gonadal tissue, it is not necessary to conduct germ cell tests, notwithstanding somatic outcomes. However, it was recommended that negative somatic cell mutagens with clear evidence for gonadal exposure and evidence of toxicity in germ cells could be considered for germ cell mutagenicity testing. For somatic mutagens that are known to reach the gonadal compartments and expose germ cells, the chemical could be assumed to be a germ cell mutagen without further testing. Nevertheless, germ cell mutagenicity testing would be needed for quantitative risk assessment. (3) What new assays should be implemented and how? There is an immediate need for research on the application of whole genome sequencing in heritable mutation analysis in humans and animals, and integration of germ cell assays with somatic cell genotoxicity tests. Focus should be on environmental exposures that can cause de novo mutations, particularly newly recognized types of genomic changes. Mutational events, which may occur by exposure of germ cells during embryonic development, should also be investigated. Finally, where there are indications of germ cell toxicity in repeat dose or reproductive toxicology tests, consideration should be given to leveraging those studies to inform of possible germ cell genotoxicity.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 01/2015; DOI:10.1016/j.mrgentox.2015.01.008 · 2.48 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014