Article

CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1.

Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
Biochemical Journal (Impact Factor: 4.78). 01/2012; 443(2):463-76. DOI: 10.1042/BJ20111255
Source: PubMed

ABSTRACT The molecular characteristics of CNG (cyclic nucleotide-gated) channels in auditory/vestibular hair cells are largely unknown, unlike those of CNG mediating sensory transduction in vision and olfaction. In the present study we report the full-length sequence for three CNGA3 variants in a hair cell preparation from the trout saccule with high identity to CNGA3 in olfactory receptor neurons/cone photoreceptors. A custom antibody targeting the N-terminal sequence immunolocalized CNGA3 to the stereocilia and subcuticular plate region of saccular hair cells. The cytoplasmic C-terminus of CNGA3 was found by yeast two-hybrid analysis to bind the C-terminus of EMILIN1 (elastin microfibril interface-located protein 1) in both the vestibular hair cell model and rat organ of Corti. Specific binding between CNGA3 and EMILIN1 was confirmed with surface plasmon resonance analysis, predicting dependence on Ca2+ with Kd=1.6×10-6 M for trout hair cell proteins and Kd=2.7×10-7 M for organ of Corti proteins at 68 μM Ca2+. Pull-down assays indicated that the binding to organ of Corti CNGA3 was attributable to the EMILIN1 intracellular sequence that follows a predicted transmembrane domain in the C-terminus. Saccular hair cells also express the transcript for PDE6C (phosphodiesterase 6C), which in cone photoreceptors regulates the degradation of cGMP used to gate CNGA3 in phototransduction. Taken together, the evidence supports the existence in saccular hair cells of a molecular pathway linking CNGA3, its binding partner EMILIN1 (and β1 integrin) and cGMP-specific PDE6C, which is potentially replicated in cochlear outer hair cells, given stereociliary immunolocalizations of CNGA3, EMILIN1 and PDE6C.

0 Followers
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are generated in the myocardium in cardiac disease. 4HNE and other toxic aldehydes form adducts with proteins, leading to cell damage and organ dysfunction. Aldehyde dehydrogenases (ALDHs) metabolize toxic aldehydes such as 4HNE into nontoxic metabolites. Both ALDH levels and activity are reduced in cardiac disease. We examined whether reduced ALDH2 activity contributes to cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin (STZ). These mice exhibited most of the characteristics of metabolic syndrome/type-2 diabetes mellitus (DM): increased blood glucose levels depicting hyperglycemia (415.2 ± 18.7 mg/dL vs. 265.2 ± 7.6 mg/dL; P < 0.05), glucose intolerance with normal plasma insulin levels, suggesting insulin resistance and obesity as evident from increased weight (44 ± 3.1 vs. 34.50 ± 1.32 g; P < 0.05) and body fat. Myocardial ALDH2 activity was 60% lower in these mice (0.1 ± 0.012 vs. 0.04 ± 0.015 µmol/min/mg protein; P < 0.05). Myocardial 4HNE levels were also elevated in the hyperglycemic hearts. Co-immunoprecipitation study showed that 4HNE formed adducts on myocardial ALDH2 protein in the mice exhibiting metabolic syndrome/type-2 DM, and they had obvious cardiac hypertrophy compared with controls as evident from increased heart weight (HW), HW to tibial length ratio, left ventricular (LV) mass and cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was correlated inversely with ALDH2 activity (R(2 )= 0.7; P < 0.05). Finally, cardiac dysfunction was observed in mice with metabolic syndrome/type-2 DM. Therefore, we conclude that reduced ALDH2 activity may contribute to cardiac hypertrophy and dysfunction in mice presenting with some of the characteristics of metabolic syndrome/type-2 DM when on a high-fat diet and low-dose STZ injection.
    Experimental Biology and Medicine 03/2014; 239(5). DOI:10.1177/1535370213520109 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sound and head movements are perceived through sensory hair cells in the inner ear. Mounting evidence indicates that this process is initiated by the opening of mechanically sensitive calcium-permeable channels, also referred to as the mechanoelectrical transducer (MET) channels, reported to be around the tips of all but the tallest stereocilia. However, the identity of MET channel remains elusive. Literature suggests that the MET channel is a non-selective cation channel with a high Ca(2+) permeability and ∼100 picosiemens conductance. These characteristics make members of the transient receptor potential (TRP) superfamily likely candidates for this role. One of these candidates is the transient receptor potential melastatin 1 protein (TRPM1), which is expressed in various cells types within the cochlea of the mouse including the hair cells. Recent studies demonstrate that mutations in the TRPM1 gene underlie the inherited retinal disease complete congenital stationary night blindness in humans and depolarizing bipolar cell dysfunction in the mouse retina, but auditory function was not assessed. Here we investigate the role of Trpm1 in hearing and as a possible hair cell MET channel using mice homozygous for the null allele of Trpm1 (Trpm1(-/-) ) or a missense mutation in the pore domain of TRPM1 (Trpm1(tvrm27/tvrm27) ). Hearing thresholds were evaluated in adult (4-5 months old) mice with auditory-evoked brain stem responses. Our data shows no statistically significant difference in hearing thresholds in Trpm1(-/-) or Trpm1(tvrm27/tvrm27) mutants compared to littermate controls. Further, none of the mutant mice showed any sign of balance disorder, such as head bobbing or circling. These data suggest that TRPM1 is not essential for development of hearing or balance and it is unlikely that TRPM1 is a component of the hair cell MET channel.
    PLoS ONE 10/2013; 8(10):e77213. DOI:10.1371/journal.pone.0077213 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
    PLoS ONE 04/2014; 9(4):e93056. DOI:10.1371/journal.pone.0093056 · 3.53 Impact Factor