Interaction of MxiG with the cytosolic complex of the type III secretion system controls Shigella virulence.

Department of Cellular Microbiology, Max-Planck-Institute for Infection Biology, Charit├ęplatz 1, 10117, Berlin, Germany.
The FASEB Journal (Impact Factor: 5.7). 01/2012; 26(4):1717-26. DOI: 10.1096/fj.11-197160
Source: PubMed

ABSTRACT Gram-negative bacteria use the type 3 secretion system (T3SS) to colonize host cells. T3SSs are ring-shaped macromolecular complexes specific for the transport of effector molecules into host cells. It was recently suggested that a cytosolic ring-shaped protein complex delivers effector molecules to the T3SS. However, how transport of effector proteins is regulated is not known. Here, we report the high-resolution X-ray crystal structure of the whole cytosolic domain of MxiG (MxiG(1-126)), a major component of the inner T3SS rings in Shigella flexneri. MxiG(1-126) folds as an FHA domain, which specifically binds phosphorylated threonines. Indeed, MxiG(1-126) binds to Spa33, a cytoplasmic-ring component of Shigella, as revealed in pulldown studies. Surface plasmon resonance analysis showed specific interaction of MxiG with a Spa33 peptide only if phosphorylated. In total, 24 copies of the MxiG(1-126) crystal structure were fitted into the cryo-EM map of the Shigella T3SS. The phosphoprotein binding site of each MxiG molecule faces the channel of the T3SS, allowing interaction with cytosolic binding partners. Secretion assays and host cell invasion studies of complemented Shigella knockout cells indicated that the phosphoprotein binding of MxiG is essential for bacterial virulence. Our findings suggest that MxiG is involved in T3SS regulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein Trafficking & Secretion.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 01/2014; · 4.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To fulfill complex biological tasks, such as locomotion and protein translocation, bacteria assemble macromolecular nanomachines. One such nanodevice, the type III secretion system (T3SS), has evolved to provide a means of transporting proteins from the bacterial cytoplasm across the periplasmic and extracellular spaces. T3SS can be broadly classified into two highly homologous families: the flagellar T3SS which drive cell motility, and the non-flagellar T3SS (NF-T3SS) that inject effector proteins into eukaryotic host cells, a trait frequently associated with virulence. Although the structures and symmetries of ancillary components of the T3SS have diversified to match requirements of different species adapted to different niches, recent genetic, molecular and structural studies demonstrate that these systems are built by arranging homologous modular protein assemblies.
    Current Opinion in Structural Biology 04/2014; 25C:111-117. · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system, and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multi-membrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system, and proposes an integrated assembly model. This article is protected by copyright. All rights reserved.
    FEMS microbiology reviews 02/2014; · 10.96 Impact Factor