Zoophilic feeding behaviour of phlebotomine sand flies in the endemic areas of cutaneous leishmaniasis of Sindh Province, Pakistan

Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Sapporo, 060-0818, Japan.
Parasitology Research (Impact Factor: 2.1). 01/2012; 111(1):125-33. DOI: 10.1007/s00436-011-2808-3
Source: PubMed


Leishmania (Leishmania) major has been identified as the major causative agent of cutaneous leishmaniasis in Sindh Province of southern Pakistan. To make a rational approach for understanding the pathogen transmission cycles, the sand fly species and their natural blood meals in the endemic areas were examined. Total DNA was individually extracted from sand flies collected in four villages in Sindh Province. PCR-RFLP (restriction fragment length polymorphism) and sequence analysis of the 18S ribosomal RNA gene revealed that female sand flies identified were Sergentomyia clydei/Sergentomyia ghesquierei/Sergentomyia magna (68.6%), Sergentomyia dubia (17.1%), Phlebotomus papatasi (7.4%), Phlebotomus alexandri-like sand flies (3.4%) and Sergentomyia dentata (3.4%). PCR amplification of leishmanial kinetoplast DNA did not result in positive signals, suggesting that all 175 tested female sand flies were not infected with leishmanial parasites or contained undetectable levels of leishmanial DNA. Amplification and sequencing of the vertebrate cytochrome b gene in 28 blood-fed sand flies revealed that P. papatasi fed on cattle and wild rat whereas P. alexandri-like specimens fed on human, cattle, goat and dog. Although Sergentomyia sand flies are generally known to feed on cold-blooded animals, S. clydei, S. dubia and S. ghesquierei preferred humans, cattle, goat, sheep, buffalo, dog, donkey, wild rat and Indian gerbil. The epidemiological significance of the zoophilic feeding on various host species by Phlebotomus and Sergentomyia sand flies in Pakistan is further required to study for better understanding the zoonotic transmission of sand-fly-borne pathogens and for appropriate management of the vectors.

Download full-text


Available from: Abdul Manan Bhutto,
  • Source
    • "are hematophagous insects feeding mostly on reptiles and birds, (Lewis, 1987). However, certain species tend to feed on mammals including humans making them potential vectors of human leishmaniasis (Lawyer et al., 1990; Sadlova et al., 2013; Tiwananthagorn et al., 2012). Indeed, human Leishmania DNA was demonstrated in naturally infected Sergentomyia spp. in Portugal, India and Mali (Berdjane-Brouk et al., 2012; Campino et al., 2013; Mukherjee et al., 1997). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sand flies belonging to the genus Sergentomyia Franca & Parrot, 1920, are hematophagous insects feeding mostly on reptiles and birds, but some species feed also on mammals including humans. Sergentomyia spp. frequently comprise the vast majority of sand flies trapped along with Phlebotomus spp., the vectors of mammalian leishmaniasis. Within the framework of a project on the ecology and transmission of visceral leishmaniasis in Ethiopia, putative breeding sites of phlebotomine sand flies were studied. Large horizontal sticky traps (LHSTs) covered with sand fly-proof mesh were deployed over cracked vertisol and related habitats for up to 3 nights, and emerging sand flies were collected daily. Emergence traps (ETs) were also adapted to sample other putative breeding sites including tree trunks, termite mounds, rock piles and vertical river banks. Productive breeding sites were identified in the trunks and roots systems of trees, vertisol fields, cracks and burrows in vertisol dry river banks and termite mounds. Emerging flies were also collected form a stone wall and a rock pile situated inside a village. Significantly more Sergentomyia spp. were trapped in vertisols by ETs deployed over root system than in open fields. Similarly, more sand flies emerged from cracks in the vertisol in fallow Sorghum than in fallow sesame fields. Productive breeding sites were characterized by stable micro-climatic conditions. Species composition of emerging sand flies varied with habitat, season and geographical location.
    Acta Tropica 05/2014; 137. DOI:10.1016/j.actatropica.2014.05.005 · 2.27 Impact Factor
  • Source
    • "This DNA sequence exhibits few intraspecies variations, but sufficient interspecies variations, thereby increasing its specificity. Thus, a large number of hosts may be analysed using universal primers and phylogenetically close species may be distinguished using a molecular test based on the cytb gene (Boakye et al. 1999, Chow-Shaffer et al. 2000, Lee et al. 2002, Meece et al. 2005, Steuber et al. 2005, Muturi et al. 2011, Garlapati et al. 2012, Tiwananthagorn et al. 2012, Pettersson et al. 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.
    Memórias do Instituto Oswaldo Cruz 05/2014; DOI:10.1590/0074-0276130405 · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania siamensis was firstly described as a causative agent of autochthonous visceral leishmaniasis in southern provinces of Thailand since 2008. The spread of leishmaniasis depends on the distribution of the vectors and reservoir hosts. Unfortunately, little is known about these vital factors. The objective of this study was to identify the distribution of sandfly species, their density, and their habitats in the affected areas of leishmaniasis, southern Thailand. A cross-sectional survey of sandflies was conducted in three provinces of southern Thailand where leishmaniasis cases were previously reported. The collection of sandflies was performed using CDC light traps for four consecutive months, from March to June 2009. A total of 2,698 sandflies were collected in the affected areas. Among 1,451 female sandflies, six species of genus Sergentomyia were identified, i.e., Sergentomyia gemmea, Sergentomyia iyengari, Sergentomyia barraudi, Sergentomyia indica, Sergentomyia silvatica, and Sergentomyia perturbans. S. gemmea (81.4 %) was the most predominant species in all areas. In addition, one species of the genus Phlebotomus, Phlebotomus argentipes, a known vector of leishmaniasis was also detected. The distribution of sandfly species in these leishmaniasis-affected areas was different from the previous studies in other areas of Thailand. Further studies are needed to proof whether these sandflies can be the natural vectors of leishmaniasis.
    Parasitology Research 09/2012; 112(1). DOI:10.1007/s00436-012-3137-x · 2.10 Impact Factor
Show more