Article

Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering.

Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
Magnetic Resonance Imaging (Impact Factor: 2.02). 04/2012; 30(3):312-22. DOI: 10.1016/j.mri.2011.12.002
Source: PubMed

ABSTRACT The purpose of this study is to evaluate the diagnostic efficacy of the representative characteristic kinetic curve of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) extracted by fuzzy c-means (FCM) clustering for the discrimination of benign and malignant breast tumors using a novel computer-aided diagnosis (CAD) system. About the research data set, DCE-MRIs of 132 solid breast masses with definite histopathologic diagnosis (63 benign and 69 malignant) were used in this study. At first, the tumor region was automatically segmented using the region growing method based on the integrated color map formed by the combination of kinetic and area under curve color map. Then, the FCM clustering was used to identify the time-signal curve with the larger initial enhancement inside the segmented region as the representative kinetic curve, and then the parameters of the Tofts pharmacokinetic model for the representative kinetic curve were compared with conventional curve analysis (maximal enhancement, time to peak, uptake rate and washout rate) for each mass. The results were analyzed with a receiver operating characteristic curve and Student's t test to evaluate the classification performance. Accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the combined model-based parameters of the extracted kinetic curve from FCM clustering were 86.36% (114/132), 85.51% (59/69), 87.30% (55/63), 88.06% (59/67) and 84.62% (55/65), better than those from a conventional curve analysis. The A(Z) value was 0.9154 for Tofts model-based parametric features, better than that for conventional curve analysis (0.8673), for discriminating malignant and benign lesions. In conclusion, model-based analysis of the characteristic kinetic curve of breast mass derived from FCM clustering provides effective lesion classification. This approach has potential in the development of a CAD system for DCE breast MRI.

0 Bookmarks
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate a computer-aided system for detecting breast masses using dynamic contrast-enhanced magnetic resonance imaging for clinical use. Detection performance of the system was analyzed on 61 biopsy-confirmed lesions (21 benign and 40 malignant lesions) in 34 women. The breast region was determined using the demons deformable algorithm. After the suspicious tissues were identified by kinetic feature (area under the curve) and the fuzzy c-means clustering method, all breast masses were detected based on the rotation-invariant and multi-scale blob characteristics. Subsequently, the masses were further distinguished from other detected non-tumor regions (false positives). Free-response operating characteristics (FROC) curve and detection rate were used to evaluate the detection performance. Using the combined features, including blob, enhancement, morphologic, and texture features with 10-fold cross validation, the mass detection rate was 100 % (61/61) with 15.15 false positives per case and 91.80 % (56/61) with 4.56 false positives per case. In conclusion, the proposed computer-aided detection system can help radiologists reduce inter-observer variability and the cost associated with detection of suspicious lesions from a large number of images. Our results illustrated that breast masses can be efficiently detected and that enhancement and morphologic characteristics were useful for reducing non-tumor regions.
    Journal of Digital Imaging 04/2014; · 1.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertise. The aim of this work is to propose a novel automated breast cancer localization system for DCE-MRI. Such a system can be used to support radiologists in DCE-MRI analysis by marking suspicious areas. The proposed method initially corrects for motion artifacts and segments the breast. Subsequently, blob and relative enhancement voxel features are used to locate lesion candidates. Finally, a malignancy score for each lesion candidate is obtained using region-based morphological and kinetic features computed on the segmented lesion candidate. We performed experiments to compare the use of different classifiers in the region classification stage and to study the effect of motion correction in the presented system. The performance of the algorithm was assessed using free-response operating characteristic (FROC) analysis. For this purpose, a dataset of 209 DCE-MRI studies was collected. It is composed of 95 DCE-MRI studies with 105 breast cancers (55 mass-like and 50 non-mass-like malignant lesions) and 114 DCE-MRI studies from women participating in a screening program which were diagnosed to be normal. At 4 false positives per normal case, 89% of the breast cancers (91% and 86% for mass-like and non-mass-like malignant lesions, respectively) were correctly detected. Copyright © 2014 Elsevier B.V. All rights reserved.
    Medical Image Analysis 12/2014; 20(1). · 3.68 Impact Factor