Article

Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling.

Department of Physical Therapy and Graduate, Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan, Republic of China.
Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter (Impact Factor: 3.52). 01/2012; 55(4):1104-15. DOI: 10.1016/j.jvs.2011.10.011
Source: PubMed

ABSTRACT Resistin, an adipocytokine, plays a potential role in cardiovascular disease and may contribute to increased atherosclerotic risk by modulating the activity of endothelial cells. A growing body of evidence suggests that aspirin is a potent antioxidant. We investigated whether aspirin mitigates resistin-induced endothelial dysfunction via modulation of reactive oxygen species (ROS) generation and explored the role that AMP-activated protein kinase (AMPK), a negative regulator of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, plays in the suppressive effects of aspirin on resistin-induced endothelial dysfunction.
Human umbilical vein endothelial cells (HUVECs) were pretreated with various doses of aspirin (10-500 μg/mL) for 2 hours and then incubated with resistin (100 ng/mL) for an additional 48 hours. Fluorescence produced by the oxidation of dihydroethidium (DHE) was used to quantify the production of superoxide in situ; superoxide dismutase (SOD) and catalase activities were determined by an enzymatic assay; and protein levels of AMPK-mediated downstream signaling were investigated by Western blot.
Treatment of HUVECs with resistin for 48 hours resulted in a 2.9-fold increase in superoxide production; however, pretreatment with aspirin resulted in a dose-dependent decrease in production of superoxide (10-500 μg/mL; n = 3 experiments; all P < .05). Resistin also suppressed the activity of superoxide dismutase and catalase by nearly 50%; that result, however, was not observed in HUVECs that had been pretreated with aspirin at a concentration of 500 μg/mL. The membrane translocation assay showed that the levels of NADPH oxidase subunits p47(phox)and Rac-1 in membrane fractions of HUVECs were threefold to fourfold higher in cells that had been treated with resistin for 1 hour than in untreated cells; however, pretreatment with aspirin markedly inhibited resistin-induced membrane assembly of NADPH oxidase via modulating AMPK-suppressed PKC-α activation. Application of AMPKα1-specific siRNA resulted in increased activation of PKC-α and p47(phox). In addition, resistin significantly decreased AMPK-mediated downstream Akt/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling and induced the phosphorylation of p38 mitogen-activated protein kinases, which in turn activated NF-κB-mediated inflammatory responses such as the release of interleukin (IL)-6 and IL-8, the overexpression of adhesion molecules, and stimulation of monocytic THP-1 cell attachment to HUVECs (2.5-fold vs control; n = 3 experiments). Furthermore, resistin downregulated eNOS and upregulated inducible NO synthase (iNOS) expression, thereby augmenting the formation of NO and protein nitrosylation. Pretreatment with aspirin, however, exerted significant cytoprotective effects in a dose-dependent manner (P < .05).
Our findings suggest a direct connection between adipocytokines and endothelial dysfunction and provide further insight into the protective effects of aspirin in obese individuals with endothelial dysfunction.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest that hydrogen sulfide (H2S) exhibits potent antioxidant capacity and improves vascular and tissue functions. Thus we aimed to compare the antioxidant efficacy of H2S to that of superoxide dismutase (SOD).Isometric force of isolated rat carotid arteries and gracilis veins was measured with a myograph. The vasomotor effect of the superoxide-generator pyrogallol (10-5M) was obtained in control conditions, and then in the presence of SOD (120 U/ml) or H2S (10-5M or 10-4M), respectively. Spectrophotometric measurements were performed to detect the effect of SOD and H2S on the auto-oxidation of pyrogallol.Pyrogallol increased the isometric force of carotid arteries (9.7 ± 0.8 mN), which was abolished by SOD (5.3 ± 0.8 mN), was not affected by 10-5M H2S (9.1 ± 0.5 mN), whereas 10-4M H2S slightly, but significantly reduced it (8.1 ± 0.7 mN). Pyrogallol significantly increased the isometric force of gracilis veins (1.3 ± 0.2 mN), which was abolished by SOD (0.9 ± 0.2 mN), whereas 10-5M (1.3 ± 0.2 mN), or 10-4M H2S (1.2 ± 0.2 mN) did not affect it. Pyrogallol-induced superoxide production was measured by a spectrophotometer (A420 = 0.19 ± 0.0). SOD reduced absorbance (A420 = 0.02 ± 0.0), whereas 10-5M H2S did not (A420 = 0.18 ± 0.0) and 10-4M H2S slightly reduced it (A420 = 0.15 ± 0.0).These data suggest that H2S is a less effective vascular antioxidant than SOD. We propose that the previously described beneficial effects of H2S are unlikely to be related to its direct effect on superoxide.
    Acta Physiologica Hungarica 12/2012; 99(4):411-9. · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA) can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs) treated with palmitic acid (PA) were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS). EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK) phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK) were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.
    International Journal of Molecular Sciences 01/2014; 15(6):10334-10349. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.
    PLoS ONE 01/2014; 9(5):e97554. · 3.53 Impact Factor