A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease

Department of Radiology, Peking University Third Hospital, Beijing, 100191, PR China.
Magnetic Resonance Imaging (Impact Factor: 2.02). 04/2012; 30(3):330-5. DOI: 10.1016/j.mri.2011.10.003
Source: PubMed

ABSTRACT Blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) can provide regional measurements of oxygen content using deoxyhemoglobin paramagnetic characteristics. The apparent relaxation rate or R2*(=1/T2*) can be determined from the slope of log (intensity) versus echo time and is directly proportional to the tissue content of deoxyhemoglobin. Thus, as the level of deoxyhemoglobin increases, T2* will decrease, leading to an increase in R2*. Chronic kidney disease (CKD) can affect oxygenation levels in renal parenchyma, which influences the clinical course of the disease. The goal of this study was to detect and assess renal oxygenation levels in CKD using BOLD MRI.
Fifteen healthy subjects and 11 patients with CKD underwent a renal scan using multigradient-recalled-echo sequence with eight echoes. R2* (1/s) of the renal cortex and medulla was measured on BOLD images. Of the 11 patients, nine had biopsy-proven chronic glomerulonephritis, and two had a similar diagnosis based on clinical symptoms and investigations.
Mean medullary R2* (MR2*) and cortex R2* (CR2*) levels were significantly higher in patients (22 kidneys, MR2*=24.79±4.84 s(-1), CR2*=18.97±2.72 s(-1)) than in controls (30 kidneys, MR2*=19.98±1.19 s(-1), CR2*=16.03±1.23 s(-1)) (P<.01), and MR2* was increased more than CR2*. Medullary to cortical R2* ratios (MCR2*) of patients were significantly increased when compared with those of controls (P<.01). In the patient group, estimated glomerular filtration rate levels were greater than or equal to 60 ml/min/1.73 m(2) in six patients (12 kidneys), whose MR2* and CR2* were also significantly higher than those of controls (P<.01). Serum creatinine levels were normal in seven patients (14 kidneys), whose MR2*, CR2* and MCR2* were also higher than those of controls (P<.01).
BOLD MRI can be used to evaluate changes in renal oxygenation in CKD, suggesting that it has the potential to be an excellent noninvasive tool for the evaluation of renal function.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique.
    International Journal of Nephrology and Renovascular Disease 01/2014; 7:421-435. DOI:10.2147/IJNRD.S42924
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determine the reproducibility of renal artery blood flow (RABF) and blood-oxygenation level dependent (R2*) in patients with chronic kidney disease (CKD) and healthy controls. RABF and R2* were measured in 11 CKD patients and 9 controls twice with 1- to 2-week interval. R2* in the cortex and medulla were determined after breathing atmospheric air and 100% oxygen. Reproducibility was evaluated by coefficients of variation (CV), limits of agreements and intra-class coefficient calculated by variance components by maximum likelihood modeling. Single-kidney RABF (mL/min) for patients was: 170 ± 130 and 186 ± 137, and for controls: 365 ± 119 and 361 ± 107 (P < 0.05 versus patients), for first and second scans, respectively. RABF measurements were reproducible with a CV of 12.9% and 8.3% for patients and controls, respectively. Renal cortical R2* was: 13.6 ± 0.9 and 13.5 ± 1.2 in patients (CV = 8.0%), and 13.8 ± 1.6 and 14.0 ± 1.5 in controls (CV = 5.6%), while medullary R2*(s(-1)) was: 26.9 ± 2.0 and 27.0 ± 4.0 (CV = 8.0%) in patients, and 26.0 ± 2.4 and 26.1 ± 2.1 (CV = 3.6%) in controls, for first and second scans, respectively. In both groups R2* in medulla decreased after breathing 100% oxygen. The reproducibility was high for both RABF and R2* in patients and controls, particularly in the cortex. Inhalation of 100% oxygen reduced medullary R2*. J. Magn. Reson. Imaging 2013;. © 2013 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 11/2013; 40(5). DOI:10.1002/jmri.24446 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess inter-observer variability of renal blood oxygenation level-dependent MRI (BOLD-MRI) using a new method of analysis, called the concentric objects (CO) technique, in comparison with the classical ROI (region of interest)-based technique.
    Magnetic Resonance Imaging 12/2014; 33(3). DOI:10.1016/j.mri.2014.12.002 · 2.02 Impact Factor