Article

A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease.

Department of Radiology, Peking University Third Hospital, Beijing, 100191, PR China.
Magnetic Resonance Imaging (Impact Factor: 2.06). 04/2012; 30(3):330-5. DOI: 10.1016/j.mri.2011.10.003
Source: PubMed

ABSTRACT Blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) can provide regional measurements of oxygen content using deoxyhemoglobin paramagnetic characteristics. The apparent relaxation rate or R2*(=1/T2*) can be determined from the slope of log (intensity) versus echo time and is directly proportional to the tissue content of deoxyhemoglobin. Thus, as the level of deoxyhemoglobin increases, T2* will decrease, leading to an increase in R2*. Chronic kidney disease (CKD) can affect oxygenation levels in renal parenchyma, which influences the clinical course of the disease. The goal of this study was to detect and assess renal oxygenation levels in CKD using BOLD MRI.
Fifteen healthy subjects and 11 patients with CKD underwent a renal scan using multigradient-recalled-echo sequence with eight echoes. R2* (1/s) of the renal cortex and medulla was measured on BOLD images. Of the 11 patients, nine had biopsy-proven chronic glomerulonephritis, and two had a similar diagnosis based on clinical symptoms and investigations.
Mean medullary R2* (MR2*) and cortex R2* (CR2*) levels were significantly higher in patients (22 kidneys, MR2*=24.79±4.84 s(-1), CR2*=18.97±2.72 s(-1)) than in controls (30 kidneys, MR2*=19.98±1.19 s(-1), CR2*=16.03±1.23 s(-1)) (P<.01), and MR2* was increased more than CR2*. Medullary to cortical R2* ratios (MCR2*) of patients were significantly increased when compared with those of controls (P<.01). In the patient group, estimated glomerular filtration rate levels were greater than or equal to 60 ml/min/1.73 m(2) in six patients (12 kidneys), whose MR2* and CR2* were also significantly higher than those of controls (P<.01). Serum creatinine levels were normal in seven patients (14 kidneys), whose MR2*, CR2* and MCR2* were also higher than those of controls (P<.01).
BOLD MRI can be used to evaluate changes in renal oxygenation in CKD, suggesting that it has the potential to be an excellent noninvasive tool for the evaluation of renal function.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In functional renal magnetic resonance imaging (MRI), advanced techniques are applied to obtain information on a functional and molecular level from the kidney tissue beyond pure morphology. Techniques such as diffusion-weighted and diffusion tensor imaging, arterial spin labelling, and blood oxygenation level-dependent imaging provide potential biomarkers of organ function. Moreover, dynamic contrast-enhanced techniques after the intra-venous injection of gadolinium-chelates may be used to assess glomerular filtration and urinary excretion. This review summarizes recent developments of contrast- and non-contrast-enhanced MRI techniques for assessment of renal function in a clinical setting. The physiological background and the sequence techniques are described in detail. Potential clinical applications of the different techniques are discussed regarding their potential usefulness in the assessment of parenchymal diseases, urinary tract anomalies, transplant kidney function, and renal masses.
    Current Radiology Reports. 1(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood oxygen level-dependent MRI (BOLD MRI) is a noninvasive technique for evaluating kidney tissue oxygenation that requires no contrast exposure, with the potential to allow functional assessment in patients with atherosclerotic renal artery stenosis. Normal cortical-to-medulla oxygenation gradients are preserved in many patients treated for several years with medical antihypertensive therapy without restoring renal blood flow. The current review is of particular interest as new methods have been applied to the analyses of BOLD MRI, opening the perspective of its wider utilization in clinical practice. Recent findings show that more severe vascular compromise ultimately overwhelms renal adaptive changes, leading to overt cortical hypoxia and expansion of medullary hypoxic zones. 'Fractional kidney hypoxia' method of analysis, developed as an alternative method of BOLD MRI analysis, avoids the assumption of discrete cortical and medullary values and decreases the bias related to operator selection of regions of interests. We believe that thoughtful application and analysis of BOLD MRI can provide critical insights into changes in renal function prior to the onset of irreversible renal injury and may identify patients most likely to gain from measures to reverse or repair disorders of tissue oxygenation.
    Current Opinion in Nephrology and Hypertension 09/2013; 22(5):519-24. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determine the reproducibility of renal artery blood flow (RABF) and blood-oxygenation level dependent (R2*) in patients with chronic kidney disease (CKD) and healthy controls. RABF and R2* were measured in 11 CKD patients and 9 controls twice with 1- to 2-week interval. R2* in the cortex and medulla were determined after breathing atmospheric air and 100% oxygen. Reproducibility was evaluated by coefficients of variation (CV), limits of agreements and intra-class coefficient calculated by variance components by maximum likelihood modeling. Single-kidney RABF (mL/min) for patients was: 170 ± 130 and 186 ± 137, and for controls: 365 ± 119 and 361 ± 107 (P < 0.05 versus patients), for first and second scans, respectively. RABF measurements were reproducible with a CV of 12.9% and 8.3% for patients and controls, respectively. Renal cortical R2* was: 13.6 ± 0.9 and 13.5 ± 1.2 in patients (CV = 8.0%), and 13.8 ± 1.6 and 14.0 ± 1.5 in controls (CV = 5.6%), while medullary R2*(s(-1)) was: 26.9 ± 2.0 and 27.0 ± 4.0 (CV = 8.0%) in patients, and 26.0 ± 2.4 and 26.1 ± 2.1 (CV = 3.6%) in controls, for first and second scans, respectively. In both groups R2* in medulla decreased after breathing 100% oxygen. The reproducibility was high for both RABF and R2* in patients and controls, particularly in the cortex. Inhalation of 100% oxygen reduced medullary R2*. J. Magn. Reson. Imaging 2013;. © 2013 Wiley Periodicals, Inc.
    Journal of Magnetic Resonance Imaging 11/2013; · 2.57 Impact Factor