Article

Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions.

The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Molecular cell (Impact Factor: 14.46). 01/2012; 45(1):13-24. DOI: 10.1016/j.molcel.2011.10.021
Source: PubMed

ABSTRACT Nuclear factor κB (NF-κB) is an antiapoptotic transcription factor. We show that the antiapoptotic actions of NF-κB are mediated by hydrogen sulfide (H(2)S) synthesized by cystathionine gamma-lyase (CSE). TNF-α treatment triples H(2)S generation by stimulating binding of SP1 to the CSE promoter. H(2)S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE-deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H(2)S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the coactivator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early after TNF-α treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. In CSE mutant mice, antiapoptotic influences of NF-κB are markedly diminished. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its antiapoptotic transcriptional activity.

0 Followers
 · 
267 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. © 2015 Elsevier Inc. All rights reserved.
  • Source
    Nitric Oxide 05/2015; 47:S40-S41. DOI:10.1016/j.niox.2015.02.099 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral arterial disease (PAD) affects millions of Americans and leads to critical limb ischemia (CLI) in the most severe cases. Investigators have demonstrated the utility of hydrogen sulfide for restoring perfusion in rodent models of chronic ischemia. We sought to determine the minimum effective dose (MED) of sulfide necessary to restore perfusion in the rat hindlimb, to assess the persistence of limb perfusion after cessation of treatment, and to compare perfusion measurements between laser doppler and ultrasound methods. In 3 separate experiments, sodium sulfide (1.0, 0.5, or 0.25 mg/kg twice daily for 14 days, 0.25 mg/kg twice daily for 7 days, 0.5 mg/kg once daily for 7 days, or 0.25 mg/kg twice daily for 3 days) or vehicle was administered after left femoral artery ligation and transection. Hindlimb perfusion was assessed by laser doppler flowmetry and contrast enhanced ultrasound over the duration of each study, and cellular proliferation and vascular density were assessed by immunohistochemical means in the initial experiment. Intravenous sodium sulfide at 0.25, 0.5, or 1.0 mg/kg twice daily for 2 weeks significantly enhanced the recovery of blood flow to the ischemic hindlimb by 7 days. The enhancement of blood flow with 1.0 mg/kg dosing was coincident with an increase in cellular proliferation and vascular density in the ischemic tissue. In a final experiment, i.v. administration of sodium sulfide at 0.5 mg/kg once daily for 7 days or 0.25 mg/kg twice daily for 7 days significantly elevated blood flow and skeletal muscle perfusion in the ischemic hindlimb, whereas 0.25 mg/kg twice daily for 3 days had no effect. This enhancement of blood flow appeared long lived, as blood flow remained elevated 3 weeks after cessation of treatment. These data, together with other published observations, demonstrate the efficacy of hydrogen sulfide in restoring perfusion to chronically ischemic tissue and establish a minimum efficacious dose in the rat hindlimb model.
    12/2015; 5(1). DOI:10.1186/s13618-015-0027-1