Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli.

Computational Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093-0634, USA.
Neuron (Impact Factor: 15.98). 01/2012; 73(1):159-70. DOI: 10.1016/j.neuron.2011.12.013
Source: PubMed

ABSTRACT The response of cortical neurons to a sensory stimulus is shaped by the network in which they are embedded. Here we establish a role of parvalbumin (PV)-expressing cells, a large class of inhibitory neurons that target the soma and perisomatic compartments of pyramidal cells, in controlling cortical responses. By bidirectionally manipulating PV cell activity in visual cortex we show that these neurons strongly modulate layer 2/3 pyramidal cell spiking responses to visual stimuli while only modestly affecting their tuning properties. PV cells' impact on pyramidal cells is captured by a linear transformation, both additive and multiplicative, with a threshold. These results indicate that PV cells are ideally suited to modulate cortical gain and establish a causal relationship between a select neuron type and specific computations performed by the cortex during sensory processing.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: A broad neuron-centric conception of contextual modulation is reviewed and re-assessed in the light of recent neurobiological studies of amplification, suppression, and synchronization. Behavioural and computational studies of perceptual and higher cognitive functions that depend on these processes are outlined, and evidence that those functions and their neuronal mechanisms are impaired in schizophrenia is summarized. Finally, we compare and assess the long-term biological functions of contextual modulation at the level of computational theory as formalized by the theories of coherent infomax and free energy reduction. We conclude that those theories, together with the many empirical findings reviewed, show how contextual modulation at the neuronal level enables the cortex to flexibly adapt the use of its knowledge to current circumstances by amplifying and grouping relevant activities and by suppressing irrelevant activities. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 02/2015; 52. DOI:10.1016/j.neubiorev.2015.02.010 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diverse types of local GABAergic interneurons shape the cortical representation of sensory information. Here we show how somatostatin-expressing interneurons (SOM cells) contribute to odor coding in mouse olfactory cortex. We find that odor-tuned SOM cells regulate principal cells through a purely subtractive operation that is independent of odor identity or intensity. This operation enhances the salience of odor-evoked activity without changing cortical odor tuning. SOM cells inhibit both principal cells and fast-spiking interneurons, indicating that subtractive inhibition reflects the interplay of multiple classes of interneurons.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical organization rests upon the fundamental principle that neurons sharing similar properties are co-located. In the visual cortex, neurons are organized into orientation columns. In a column, most neurons respond optimally to the same axis of an oriented edge, that is, the preferred orientation. This orientation selectivity is believed to be absolute in adulthood. However, in a fully mature brain, it has been established that neurons change their selectivity following sensory experience or visual adaptation. Here, we show that after applying an adapter away from the tested cells, neurons whose receptive fields were located remotely from the adapted site also exhibit a novel selectivity in spite of the fact that they were not adapted. These results indicate a robust reconfiguration and remapping of the orientation domains with respect to each other thus removing the possibility of an orientation hole in the new hypercolumn. These data suggest that orientation columns transcend anatomy, and are almost strictly functionally dynamic.
    Scientific Reports 03/2015; 5:9436. DOI:10.1038/srep09436 · 5.08 Impact Factor

Preview (4 Sources)

Available from