Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP.

Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.
Biochemistry (Impact Factor: 3.38). 02/2012; 51(7):1532-46. DOI: 10.1021/bi201595v
Source: PubMed

ABSTRACT The mitochondrial ATP synthase (F(o)F(1)) is one of the most abundant, important, and complex enzymes found in animals and humans. In earlier studies, we used the photosensitive phosphate analogue vanadate (V(i)) to study the enzyme's mechanism in the transition state. Significantly, these studies showed that Mg(2+) plays an important role in transition state formation during ATP synthesis. Additionally, in both MgADP·V(i)-F(1) and MgV(i)-F(1) complexes, photoactivation of orthovanadate (V(i)) induced cleavage at the third residue within the P-loop (GGAGVGKT), i.e., βA158, suggesting its proximity to the γ-phosphate during transition state formation. However, despite our recent release of the F(1)-ATPase structure containing V(i), the structural details regarding the role of Mg(2+) have remained elusive. Therefore, in this study, we sought to improve our understanding of the essential role of Mg(2+) during transition state formation. We utilized Protein Data Bank structural data representing different conformational intermediates of key steps in ATP synthesis to assemble a database of positional relationships between landmark residues of the catalytic site and the bound ligand. Applying novel bioinformatics methods, we combined the resulting interatomic spatial data with an animated model of the catalytic site to visualize the exact nature of the changes in these positional relationships during ATP synthesis. The results of these studies reported here show that the absence of Mg(2+) results in migration of inorganic phosphate (P(i)) from βA158 to a more medial position in the P-loop binding pocket, thereby disrupting essential placement and orientation of the P(i) needed to form the transition state structure and therefore MgATP.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.
    The Scientific World Journal 01/2014; 2014:567398. · 1.22 Impact Factor
  • Source
    Abir U. Igamberdiev, Leszek A. Kleczkowski
    [Show abstract] [Hide abstract]
    ABSTRACT: The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, supported by adenylate kinase (AK) equilibrium in the intermembrane space, (ii) the supply of phosphate via membrane transporter in symport with H+, and (iii) the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.
    Frontiers in Plant Science 01/2015; in press. · 3.64 Impact Factor