Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus.

Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America.
PLoS Genetics (Impact Factor: 8.17). 12/2011; 7(12):e1002422. DOI: 10.1371/journal.pgen.1002422
Source: PubMed

ABSTRACT The Prader-Willi syndrome (PWS [MIM 17620]) and Angelman syndrome (AS [MIM 105830]) locus is controlled by a bipartite imprinting center (IC) consisting of the PWS-IC and the AS-IC. The most widely accepted model of IC function proposes that the PWS-IC activates gene expression from the paternal allele, while the AS-IC acts to epigenetically inactivate the PWS-IC on the maternal allele, thus silencing the paternally expressed genes. Gene order and imprinting patterns at the PWS/AS locus are well conserved from human to mouse; however, a murine AS-IC has yet to be identified. We investigated a potential regulatory role for transcription from the Snrpn alternative upstream exons in silencing the maternal allele using a murine transgene containing Snrpn and three upstream exons. This transgene displayed appropriate imprinted expression and epigenetic marks, demonstrating the presence of a functional AS-IC. Transcription of the upstream exons from the endogenous locus correlates with imprint establishment in oocytes, and this upstream exon expression pattern was conserved on the transgene. A transgene bearing targeted deletions of each of the three upstream exons exhibited loss of imprinting upon maternal transmission. These results support a model in which transcription from the Snrpn upstream exons directs the maternal imprint at the PWS-IC.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential marking of genes in female and male gametes by DNA methylation is essential to genomic imprinting. In female gametes transcription traversing differentially methylated regions (DMRs) is a common requirement for de novo methylation at DMRs. At the imprinted Gnas cluster oocyte specific transcription of a protein-coding transcript, Nesp, is needed for methylation of two DMRs intragenic to Nesp, namely the Nespas-Gnasxl DMR and the Exon1A DMR, thereby enabling expression of the Gnas transcript and repression of the Gnasxl transcript. On the paternal allele, Nesp is repressed, the germline DMRs are unmethylated, Gnas is repressed and Gnasxl is expressed. Using mutant mouse models, we show that on the paternal allele, ectopic transcription of Nesp traversing the intragenic Exon1A DMR (which regulates Gnas expression) results in de novo methylation of the Exon1A DMR and de-repression of Gnas just as on the maternal allele. However, unlike the maternal allele, methylation on the mutant paternal allele occurs post-fertilisation, i.e. in somatic cells. This, to our knowledge is the first example of transcript/transcription driven DNA methylation of an intragenic CpG island, in somatic tissues, suggesting that transcription driven de novo methylation is not restricted to the germline in the mouse. Additionally, Gnasxl is repressed on a paternal chromosome on which Nesp is ectopically expressed. Thus, a paternally inherited Gnas cluster showing ectopic expression of Nesp is “maternalised” in terms of Gnasxl and Gnas expression. We show that these mice have a phenotype similar to mutants with two expressed doses of Gnas and none of Gnasxl.
    PLoS ONE 02/2015; 10(2). DOI:10.1371/journal.pone.0117378 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11-q13 is responsible for both Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader-Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS-PWS locus. The PWS-smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS-SRO element generates maternal allele identity by epigenetically inactivating the PWS-SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS-SRO, the element necessary for maternal allele identity. We find that, in humans, the AS-SRO is an oocyte-specific promoter that generates transcripts that transit the PWS-SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1411261111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Technological advancements and deep-sequencing of the transcriptome have facilitated the identification of numerous new lncRNAs, many with unusual properties, however, the function of most of these molecules is still largely unknown. Some evidence suggests that several of these lncRNAs may regulate their own transcription in cis, and that of nearby genes, by recruiting remodeling factors to local chromatin. Notably, lncRNAs are known to exist at many imprinted gene clusters. Genomic imprinting is a complex and highly regulated process resulting in the monoallelic silencing of certain genes, based on the parent-of-origin of the allele. It is thought that lncRNAs may regulate many imprinted loci, however, the mechanism by which they exert such influence is poorly understood. This review will discuss what is known about the lncRNAs of major imprinted loci, and the roles they play in the regulation of imprinting.
    03/2014; 4(1):76-100. DOI:10.3390/biom4010076

Full-text (2 Sources)

Available from
Jun 2, 2014