Article

End-to-end attraction of duplex DNA.

Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801, USA.
Nucleic Acids Research (Impact Factor: 8.28). 01/2012; 40(9):3812-21. DOI: 10.1093/nar/gkr1220
Source: PubMed

ABSTRACT Recent experiments [Nakata, M. et al., End-to-end stacking and liquid crystal condensation of 6 to 20 basepair DNA duplexes. Science 2007; 318:1276-1279] have demonstrated spontaneous end-to-end association of short duplex DNA fragments into long rod-like structures. By means of extensive all-atom molecular dynamic simulations, we characterized end-to-end interactions of duplex DNA, quantitatively describing the forces, free energy and kinetics of the end-to-end association process. We found short DNA duplexes to spontaneously aggregate end-to-end when axially aligned in a small volume of monovalent electrolyte. It was observed that electrostatic repulsion of 5'-phosphoryl groups promoted the formation of aggregates in a conformation similar to the B-form DNA double helix. Application of an external force revealed that rupture of the end-to-end assembly occurs by the shearing of the terminal base pairs. The standard binding free energy and the kinetic rates of end-to-end association and dissociation processes were estimated using two complementary methods: umbrella sampling simulations of two DNA fragments and direct observation of the aggregation process in a system containing 458 DNA fragments. We found the end-to-end force to be short range, attractive, hydrophobic and only weakly dependent on the ion concentration. The relation between the stacking free energy and end-to-end attraction is discussed as well as possible roles of the end-to-end interaction in biological and nanotechnological systems.

0 Bookmarks
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Topoisomerase IB (Top1) inhibitors, such as camptothecin (CPT), stabilize the Top1-DNA cleavage complex in a DNA sequence-dependent manner. The sequence selectivity of Top1 inhibitors is important for targeting specific genomic sequences of therapeutic value. However, the molecular mechanisms underlying this selectivity remain largely unknown. We performed molecular dynamics simulations to delineate structural, dynamic and energetic features that contribute to the differential sequence selectivity of the Top1 inhibitors. We found the sequence selectivity of CPT to be highly correlated with the drug binding energies, dynamic and structural properties of the linker domain. Chemical insights, gained by per-residue binding energy analysis revealed that the non-polar interaction between CPT and nucleotide at the +1 position of the cleavage site was the major (favorable) contributor to the total binding energy. Mechanistic insights gained by a potential of mean force analysis implicated that the drug dissociation step was associated with the sequence selectivity. Pharmaceutical insights gained by our molecular dynamics analyses explained why LMP-776, an indenoisoquinoline derivative under clinical development at the National Institutes of Health, displays different sequence selectivity when compared with camptothecin and its clinical derivatives.
    Nucleic Acids Research 09/2013; · 8.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A class of replicable unnatural DNA base pairs formed between d5SICS and either dMMO2, dDMO, or dNaM were developed. To explore the use of these pairs to produce site-specifically labeled DNA, the synthesis of a variety of derivatives bearing propynyl groups, an analysis of their polymerase-mediated replication, and subsequent site-specific modification of the amplified DNA by Click chemistry is reported. With the d5SICS scaffold a propynyl ether linker is accommodated better than its aliphatic analogue, but not as well as the protected propargyl amine linker explored previously. It was also found that with the dMMO2 and dDMO analogues, the dMMO2 position para to the glycosidic linkage is best suited for linker attachment and that although aliphatic and ether-based linkers are similarly accommodated, the direct attachment of an ethynyl group to the nucleobase core is most well tolerated. To demonstrate the utility of these analogues, a variety of them were used to site-selectively attach a biotin tag to the amplified DNA. Finally, we use d5SICS(CO) -dNaM to couple one or two proteins to amplified DNA, with the double labeled product visualized by atomic force microscopy. The ability to encode the spatial relationships of arrayed molecules in PCR amplifiable DNA should have important applications, ranging from SELEX with functionalities not naturally present in DNA to the production, and perhaps "evolution" of nanomaterials.
    Chemistry 09/2013; · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.
    Nanoscale 07/2013; · 6.23 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Jun 6, 2014