Article

The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.

Department of Neurology, University of Kansas School of Medicine, Kansas City, USA.
American Journal of Medical Genetics Part B Neuropsychiatric Genetics (Impact Factor: 3.23). 03/2012; 159B(2):243-53. DOI: 10.1002/ajmg.b.32022
Source: PubMed

ABSTRACT Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes.

0 Bookmarks
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prader-Willi syndrome is a neurodevelopmental disorder resulting from the absence of expression of paternally expressed gene(s) in a highly imprinted region of chromosome 15q11-13. The physical phenotype includes evidence of growth retardation due to relative growth hormone deficiency, small hands and feet, a failure of normal secondary sexual development, and a facial appearance including narrow bifrontal diameter, almond-shaped palpebral fissures, narrow nasal root, and thin upper vermilion with downturned corners of the mouth. Anecdotally, the face of individuals with PWS receiving hGH treatment is said to "normalize." We used dense surface modelling and shape signature techniques to analyze 3D photogrammetric images of the faces of 72 affected and 388 unaffected individuals. We confirmed that adults with Prader-Willi syndrome who had never received human growth supplementation displayed known characteristic facial features. Facial growth was significantly reduced in these adults, especially in males. We demonstrated that following human growth hormone (hGH) supplementation, vertical facial growth of affected individuals falls within the normal range. However, lateral and periorbital face shape and nose shape differences in affected children who have received hGH therapy remain sufficiently strong to be significantly discriminating in comparisons with age-sex matched, unaffected individuals. Finally, we produced evidence that age at initiation and length of treatment with hGH do not appear to play a role in normalization or in consistent alteration of the face shape of affected individuals. This is the first study to provide objective shape analysis of craniofacial effects of hGH therapy in Prader-Willi syndrome. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 08/2013; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prader--Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.
    Journal of Neurodevelopmental Disorders 10/2013; 5(1):31. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: People with Prader-Willi syndrome (PWS) demonstrate social dysfunction and increased risk of autism spectrum disorder, especially those with the maternal uniparental disomy (mUPD) versus paternal deletion genetic subtype. This study compared the neural processing of social (faces) and nonsocial stimuli, varying in emotional valence, across genetic subtypes in 24 adolescents and adults with PWS. METHODS: Upright and inverted faces, and nonsocial objects with positive and negative emotional valence were presented to participants with PWS in an oddball paradigm with smiling faces serving as targets. Behavioral and event-related potential (ERP) data were recorded. RESULTS: There were no genetic subtype group differences in accuracy, and all participants performed above chance level. ERP responses revealed genetic subtype differences in face versus object processing. In those with deletions, the face-specific posterior N170 response varied in size for face stimuli versus inverted faces versus nonsocial objects. Persons with mUPD generated N170 of smaller amplitude and showed no stimulus differentiation. Brain responses to emotional content did not vary by subtype. All participants elicited larger posterior and anterior late positive potential responses to positive objects than to negative objects. Emotion-related differences in response to faces were limited to inverted faces only in the form of larger anterior late positive potential amplitudes to negative emotions over the right hemisphere. Detection of the target smiling faces was evident in the increased amplitude of the frontal and central P3 responses but only for inverted smiling faces. CONCLUSION: Persons with the mUPD subtype of PWS may show atypical face versus object processes, yet both subtypes demonstrated potentially altered processing, attention to and/or recognition of faces and their expressions.
    Journal of Neurodevelopmental Disorders 03/2013; 5(1):7. · 3.45 Impact Factor

Full-text (2 Sources)

View
38 Downloads
Available from
May 21, 2014