Argininosuccinate lyase deficiency

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA. Sandesh C.S. Nagamani
Genetics in medicine: official journal of the American College of Medical Genetics (Impact Factor: 7.33). 01/2012; 14(5):501-7. DOI: 10.1038/gim.2011.1
Source: PubMed


The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCDs), a group of inborn errors of hepatic metabolism that often result in life-threatening hyperammonemia. Argininosuccinate lyase (ASL) catalyzes the fourth reaction in this cycle, resulting in the breakdown of argininosuccinic acid to arginine and fumarate. ASL deficiency (ASLD) is the second most common UCD, with a prevalence of ~1 in 70,000 live births. ASLD can manifest as either a severe neonatal-onset form with hyperammonemia within the first few days after birth or as a late-onset form with episodic hyperammonemia and/or long-term complications that include liver dysfunction, neurocognitive deficits, and hypertension. These long-term complications can occur in the absence of hyperammonemic episodes, implying that ASL has functions outside of its role in ureagenesis and the tissue-specific lack of ASL may be responsible for these manifestations. The biochemical diagnosis of ASLD is typically established with elevation of plasma citrulline together with elevated argininosuccinic acid in the plasma or urine. Molecular genetic testing of ASL and assay of ASL enzyme activity are helpful when the biochemical findings are equivocal. However, there is no correlation between the genotype or enzyme activity and clinical outcome. Treatment of acute metabolic decompensations with hyperammonemia involves discontinuing oral protein intake, supplementing oral intake with intravenous lipids and/or glucose, and use of intravenous arginine and nitrogen-scavenging therapy. Dietary restriction of protein and dietary supplementation with arginine are the mainstays in long-term management. Orthotopic liver transplantation (OLT) is best considered only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional medical therapy.

1 Follower
22 Reads
  • Source
    • "Laboratory diagnosis of ASL deficiency is based on enhanced levels of citrulline and increased argininosuccinic acid in plasma and/or in urine [64]. A newborn screening for ASLD is available in all US citrulline testing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited liver diseases are a group of metabolic and genetic defects that typically cause early chronic liver involvement. Most are due to a defect of an enzyme/transport protein that alters a metabolic pathway and exerts a pathogenic role mainly in the liver. The prevalence is variable, but most are rare pathologies. We review the pathophysiology of such diseases and the diagnostic contribution of laboratory tests, focusing on the role of molecular genetics. In fact, thanks to recent advances in genetics, molecular analysis permits early and specific diagnosis for most disorders and helps to reduce the invasive approach of liver biopsy.
    07/2014; 2014:713754. DOI:10.1155/2014/713754
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To compare the clinical course and outcome of patients diagnosed with one of 4 neonatal-onset urea cycle disorders (UCDs): deficiency of carbamyl phosphate synthase 1 (CPSD), ornithine transcarbamylase (OTCD), argininosuccinate synthase (ASD), or argininosuccinate lyase (ALD). STUDY DESIGN: Clinical, biochemical, and neuropsychological data from 103 subjects with neonatal-onset UCDs were derived from the Longitudinal Study of Urea Cycle Disorders, an observational protocol of the Urea Cycle Disorders Consortium, one of the Rare Disease Clinical Research Networks. RESULTS: Some 88% of the subjects presented clinically by age 7 days. Peak ammonia level was 963 μM in patients with proximal UCDs (CPSD or OTCD), compared with 589 μM in ASD and 573 μM in ALD. Roughly 25% of subjects with CPSD or OTCD, 18% of those with ASD, and 67% of those with ALD had a "honeymoon period," defined as the time interval from discharge from initial admission to subsequent admission for hyperammonemia, greater than 1 year. The proportion of patients with a poor outcome (IQ/Developmental Quotient <70) was greatest in ALD (68%), followed by ASD (54%) and CPSD/OTCD (47%). This trend was not significant, but was observed in both patients aged <4 years and those aged ≥ 4 years. Poor cognitive outcome was not correlated with peak ammonia level or duration of initial admission. CONCLUSION: Neurocognitive outcomes do not differ between patients with proximal UCDs and those with distal UCDs. Factors other than hyperammonemia may contribute to poor neurocognitive outcome in the distal UCDs.
    The Journal of pediatrics 08/2012; 162(2). DOI:10.1016/j.jpeds.2012.06.065 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To compare the effects of combinatorial therapy with low-dose arginine and a nitrogen scavenging agent (sodium phenylbutyrate) vs. monotherapy with high-dose arginine on liver function tests in patients with argininosuccinic aciduria (ASA). Study design: Twelve patients with ASA were enrolled in a double-blind, placebo-controlled, cross-over study design. Subjects were randomized to receive either a low-dose of arginine therapy (100 mg · kg(-1) · d(-1)) combined with sodium phenylbutyrate (500 mg · kg(-1) · d(-1)) (LDA arm) or a high-dose of arginine alone (500 mg · kg(-1) · d(-1)) (HDA arm) for one week. At the end of one week of therapy, liver function tests were assessed and metabolite fluxes were measured using a multi-tracer stable isotope protocol. Results: Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and measures of synthetic functions of the liver were the primary outcomes. Subjects had significantly increased levels of argininosuccinate (P<0.03) and AST levels (P<0.01) after treatment with high-dose arginine. In the subset of subjects with elevated AST or ALT, treatment with high-dose of arginine was associated with further increases in plasma levels of both aminotransferases. Whereas subjects had increased arginine and citrulline flux with high-dose arginine therapy, the glutamine flux was not different between the two treatment arms. The synthetic liver functions as assessed by prothrombin time, INR, and coagulation factor levels were not different between the HDA and LDA arms. Conclusions: Administering higher doses of arginine in subjects with ASA results in increases in AST and ALT levels, especially in the subset of patients with elevated baseline aminotransferases. Hence, low-dose arginine sufficient to normalize arginine levels in plasma combined with nitrogen scavenging therapy should be considered as a therapeutic option for treatment of ASA in patients with elevations of hepatic aminotransferases.
    Molecular Genetics and Metabolism 09/2012; 107(3). DOI:10.1016/j.ymgme.2012.09.016 · 2.63 Impact Factor
Show more


22 Reads
Available from