A retrospective analysis of glycol and toxic alcohol ingestion: Utility of anion and osmolal gaps

Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA. .
BMC Clinical Pathology 01/2012; 12(1):1. DOI: 10.1186/1472-6890-12-1
Source: PubMed

ABSTRACT Patients ingesting ethylene glycol, isopropanol, methanol, and propylene glycol ('toxic alcohols') often present with non-specific signs and symptoms. Definitive diagnosis of toxic alcohols has traditionally been by gas chromatography (GC), a technique not commonly performed on-site in hospital clinical laboratories. The objectives of this retrospective study were: 1) to assess the diagnostic accuracy of the osmolal gap in screening for toxic alcohol ingestion and 2) to determine the common reasons other than toxic alcohol ingestion for elevated osmolal gaps.
Electronic medical records from an academic tertiary care medical center were searched to identify all patients in the time period from January 1, 1996 to September 1, 2010 who had serum/plasma ethanol, glucose, sodium, blood urea nitrogen, and osmolality measured simultaneously, and also all patients who had GC analysis for toxic alcohols. Detailed chart review was performed on all patients with osmolal gap of 9 or greater.
In the study period, 20,669 patients had determination of serum/plasma ethanol and osmolal gap upon presentation to the hospitals. There were 341 patients with an osmolal gap greater than 14 (including correction for estimated contribution of ethanol) on initial presentation to the medical center. Seventy-seven patients tested positive by GC for one or more toxic alcohols; all had elevated anion gap or osmolal gap or both. Other than toxic alcohols, the most common causes for an elevated osmolal gap were recent heavy ethanol consumption with suspected alcoholic ketoacidosis, renal failure, shock, and recent administration of mannitol. Only 9 patients with osmolal gap greater than 50 and no patients with osmolal gap greater than 100 were found to be negative for toxic alcohols.
Our study concurs with other investigations that show that osmolal gap can be a useful diagnostic test in conjunction with clinical history and physical examination.

1 Follower
  • Source
    • "). However, even if not directly toxic, propylene glycol increases plasma osmolality and complicates the use of osmolal gap in clinical diagnosis and management, especially for patients receiving multiple doses of propylene glycolcontaining medication, as may be done in intubated patients requiring extended sedation (Krasowski et al. 2012 "
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-2-203) contains supplementary material, which is available to authorized users.
    SpringerPlus 12/2013; 2(1):203. DOI:10.1186/2193-1801-2-203
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethylene glycol is a toxic organic solvent implicated in thousands of accidental and intentional poisonings each year. Osmotic demyelination syndrome (ODS) is traditionally known as a complication of the rapid correction of hyponatremia. Our aim was to describe how patients with ethylene glycol toxicity may be at risk for developing ODS in the absence of hyponatremia. A 64-year old female patient was comatose upon presentation and laboratory results revealed an anion gap of 39, a plasma sodium of 150 mEq/L, a plasma potassium of 3.5 mEq/L, an osmolal gap of 218, an arterial blood gas pH of 7.02, whole blood lactate of 32 mEq/L, no measurable blood ethanol, and a plasma ethylene glycol concentration of 1055.5 mg/dL. The patient was treated for ethylene glycol poisoning with fomepizole and hemodialysis. Despite having elevated serum sodium levels, the patient's hospital course was complicated by ODS. Rapid changes in serum osmolality from ethylene glycol toxicity or its subsequent treatment can cause ODS independent of serum sodium levels.
    Journal of Emergency Medicine 11/2013; 46(3). DOI:10.1016/j.jemermed.2013.08.068 · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethylene glycol poisoning, while uncommon, is clinically significant due to the associated risk of severe morbidity or lethality and it continues to occur in many countries around the world. The clinical presentation of ethylene glycol toxicity, while classically described in three phases, varies widely and when combined with the range of differential diagnoses that must be considered makes diagnosis challenging. Early and accurate detection is important in these patients, however, as there is a need to start antidotal treatment early to prevent serious harm. In this article, we will review the literature and provide guidance regarding the diagnosis of ethylene glycol poisoning. While gas chromatography is the gold standard, the usefulness of this test is hampered by delays in access due to availability. Consequently, there are several surrogate markers that can give an indication of ethylene glycol exposure but these must be interpreted with caution and within the clinical context. An in-depth review of these tests, particularly the detection of a raised osmolar gap or an raised anion gap acidosis, will form the main focus of this article.
    Annals of Clinical Biochemistry 11/2013; 51(2). DOI:10.1177/0004563213506697 · 2.08 Impact Factor
Show more

Preview (2 Sources)

Available from