Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial

Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, Gainesville, FL 32607, USA. .edu
The Lancet Neurology (Impact Factor: 21.82). 02/2012; 11(2):140-9. DOI: 10.1016/S1474-4422(11)70308-8
Source: PubMed

ABSTRACT The effects of constant-current deep brain stimulation (DBS) have not been studied in controlled trials in patients with Parkinson's disease. We aimed to assess the safety and efficacy of bilateral constant-current DBS of the subthalamic nucleus.
This prospective, randomised, multicentre controlled trial was done between Sept 26, 2005, and Aug 13, 2010, at 15 clinical sites specialising in movement disorders in the USA. Patients were eligible if they were aged 18-80 years, had Parkinson's disease for 5 years or more, and had either 6 h or more daily off time reported in a patient diary of moderate to severe dyskinesia during waking hours. The patients received bilateral implantation in the subthalamic nucleus of a constant-current DBS device. After implantation, computer-generated randomisation was done with a block size of four, and patients were randomly assigned to the stimulation or control group (stimulation:control ratio 3:1). The control group received implantation without activation for 3 months. No blinding occurred during this study, and both patients and investigators were aware of the treatment group. The primary outcome variable was the change in on time without bothersome dyskinesia (ie, good quality on time) at 3 months as recorded in patients' diaries. Patients were followed up for 1 year. This trial is registered with, number NCT00552474.
Of 168 patients assessed for eligibility, 136 had implantation of the constant-current device and were randomly assigned to receive immediate (101 patients) or delayed (35 patients) stimulation. Both study groups reported a mean increase of good quality on time after 3 months, and the increase was greater in the stimulation group (4·27 h vs 1·77 h, difference 2·51 [95% CI 0·87-4·16]; p=0·003). Unified Parkinson's disease rating scale motor scores in the off-medication, on-stimulation condition improved by 39% from baseline (24·8 vs 40·8). Some serious adverse events occurred after DBS implantation, including infections in five (4%) of 136 patients and intracranial haemorrhage in four (3%) patients. Stimulation of the subthalamic nucleus was associated with dysarthria, fatigue, paraesthesias, and oedema, whereas gait problems, disequilibrium, dyskinesia, and falls were reported in both groups.
Constant-current DBS of the subthalamic nucleus produced significant improvements in good quality on time when compared with a control group without stimulation. Future trials should compare the effects of constant-current DBS with those of voltage-controlled stimulation.
St Jude Medical Neuromodulation Division.

Download full-text


Available from: Michele Tagliati, Jul 29, 2015
  • Source
    • "It should be noted, however, that clinically available anti-cholinergics (e.g., trihexyphenidyl, benztropine, etc.) mainly act as competitive antagonists at mAChRs. A stepwise executive dysfunction has been described in cognitively intact PD patients (Taylor et al., 1986) who suffer damage to the frontal lobes and/or fibers connecting the frontal lobes with the head of the caudate during electrode implantation for deep brain stimulation (Okun et al., 2012). The role of [ 123 I]5IA- SPECT as a screening tool for identifying patients at risk for (surgery-related) cognitive decline should be further investigated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson's disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[(123)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([(123)I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease.
    Frontiers in Aging Neuroscience 08/2014; 6:213. DOI:10.3389/fnagi.2014.00213 · 2.84 Impact Factor
  • Source
    • "Kleiner-Fisman et al. (2006) Schopbach et al. (2013) Okun et al. (2012) Williams et al. (2010) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation (DBS) is an effective and evidence-based treatment option for Parkinson's disease. Studies have shown that DBS has good and long-term effects on motor function and quality of life for patients in an advanced stage of the disease and that it is more effective than medical therapy alone. Moreover, a favorable effect of DBS could also be detected at an earlier stage of the disease. On the other hand, possible risks and side effects of the procedure need to be taken into consideration. These can manifest as procedure-related complications, such as bleeding and infections in addition to stimulation-associated phenomena, such as neuropsychiatric disorders and motor side effects. Despite the good effects of DBS important issues still need to be addressed which will be discussed in this article considering the results of several new randomized and controlled clinical studies.For patients with Parkinson's disease with early fluctuations and dyskinesia, DBS has been found to be superior to the best pharmaceutical treatment; therefore, DBS can be considered as a treatment option in the earlier course of the disease. The diagnostic evaluation and the exclusion of contraindications are crucial for patient selection. The choice of the target should be based on the individual symptoms in patients although the subthalamic nucleus (STN) can be considered the standard target. In every case an individual assessment of chances and risks must be conducted and realistic goals and reasonable expectations must be defined.
    Der Nervenarzt 01/2014; · 0.86 Impact Factor
  • Source
    • "Deep brain stimulation (DBS) is a successful technique in reducing symptoms of several neurological disorders, particularly effective in the treatment of advanced Parkinson's disease (PD) [1] [2]. It is based on the stimulation, through an implanted electrode, of the basal ganglia in the brain using a train of electric biphasic pulses with a main frequency between 120 and 180 Hz. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation is a clinical technique for the treatment of parkinson's disease based on the electric stimulation, through an implanted electrode, of specific basal ganglia in the brain. To identify the correct target of stimulation and to choose the optimal parameters for the stimulating signal, intraoperative microelectrodes are generally used. However, when they are replaced with the chronic macroelectrode, the effect of the stimulation is often very different. Here, we used numerical simulations to predict the stimulation of neuronal fibers induced by microelectrodes and macroelectrodes placed in different positions with respect to each other. Results indicate that comparable stimulations can be obtained if the chronic macroelectrode is correctly positioned with the same electric center of the intraoperative microelectrode. Otherwise, some groups of fibers may experience a completely different electric stimulation.
    10/2013; 2013:262739. DOI:10.1155/2013/262739
Show more