Article

U.S. census unit population exposures to ambient air pollutants

National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
International Journal of Health Geographics (Impact Factor: 2.62). 01/2012; 11:3. DOI: 10.1186/1476-072X-11-3
Source: PubMed

ABSTRACT Progress has been made recently in estimating ambient PM(2.5) (particulate matter with aerodynamic diameter < 2.5 μm) and ozone concentrations using various data sources and advanced modeling techniques, which resulted in gridded surfaces. However, epidemiologic and health impact studies often require population exposures to ambient air pollutants to be presented at an appropriate census geographic unit (CGU), where health data are usually available to maintain confidentiality of individual health data. We aim to generate estimates of population exposures to ambient PM(2.5) and ozone for U.S. CGUs.
We converted 2001-2006 gridded data, generated by the U.S. Environmental Protection Agency (EPA) for CDC's (Centers for Disease Control and Prevention) Environmental Public Health Tracking Network (EPHTN), to census block group (BG) based on spatial proximities between BG and its four nearest grids. We used a bottom-up (fine to coarse) strategy to generate population exposure estimates for larger CGUs by aggregating BG estimates weighted by population distribution.
The BG daily estimates were comparable to monitoring data. On average, the estimates deviated by 2 μg/m(3) (for PM(2.5)) and 3 ppb (for ozone) from their corresponding observed values. Population exposures to ambient PM(2.5) and ozone varied greatly across the U.S. In 2006, estimates for daily potential population exposure to ambient PM(2.5) in west coast states, the northwest and a few areas in the east and estimates for daily potential population exposure to ambient ozone in most of California and a few areas in the east/southeast exceeded the National Ambient Air Quality Standards (NAAQS) for at least 7 days.
These estimates may be useful in assessing health impacts through linkage studies and in communicating with the public and policy makers for potential intervention.

1 Follower
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The creation of the Centers for Disease Control and Prevention Environmental Public Health Tracking Program spawned an invigorating and challenging approach toward implementing the nation's first population-based, environmental disease tracking surveillance system. More than 10 years have passed since its creation and an abundance of peer-reviewed articles have been published spanning a broad variety of public health topics related primarily to the goal of reducing diseases of environmental origin. To evaluate peer-reviewed literature related to Environmental Public Health Tracking during 2002-2012, recognize major milestones and challenges, and offer recommendations. A narrative overview was conducted using titles and abstracts of peer-reviewed articles, key word searches, and science-based search engine databases. Eighty published articles related to "health tracking" were identified and categorized according to 4 crossed-central themes. The Science and Research theme accounted for the majority of published articles, followed by Policy and Practice, Collaborations Among Health and Environmental Programs, and Network Development. Overall, progress was reported in the areas of data linkage, data sharing, surveillance methods, and network development. Ongoing challenges included formulating better ways to establish the connections between health and the environment, such as using biomonitoring, public water systems, and private well water data. Recommendations for future efforts include use of data to inform policy and practice and use of electronic health records data for environmental health surveillance.
    Journal of public health management and practice: JPHMP 03/2015; 21 Suppl 2:S23-35. DOI:10.1097/PHH.0000000000000181 · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme values. The paper then proposes the use of an easy to comprehend effect size based on the mean difference between treatment groups, divided by the mean absolute deviation of all scores. Using a simulation based on 1656 randomised controlled trials each with 100 cases, and a before and after design, the paper shows that the substantive findings from any such trial would be the same whether raw-score differences, a traditional effect size like Cohen's d, or the mean absolute deviation effect size is used. The same would be true for any comparison, whether for a trial or a simpler cross-sectional design. It seems that there is a clear choice over which effect size to use. The main advantage in using raw scores as an outcome measure is that they are easy to comprehend. However, they might be misleading and so perhaps require more judgement to interpret than traditional ‘effect’ sizes. Among the advantages of using the mean absolute deviation effect size are its relative simplicity, everyday meaning, and the lack of distortion of extreme scores caused by the squaring involved in computing the standard deviation. Given that working with absolute values is no longer the barrier to computation that it apparently was before the advent of digital calculators, there is a clear place for the mean absolute deviation effect size (termed ‘A’).
    International Journal of Research & Method in Education 12/2014; 38(2):1-10. DOI:10.1080/1743727X.2014.920810
  • [Show abstract] [Hide abstract]
    ABSTRACT: Concerns have arisen recently as to whether the upstream oil and gas (UOG) sector — responsible for exploration, production, and some processing of raw fossil fuels — is negatively impacting human (and environmental) health in northeast British Columbia (NEBC). The region has experienced increased rates of cancers and other illnesses that have been linked to the contaminants and stressors associated with UOG. Contaminants reach human receptors through environmental pathways, namely air, soil, water, and food. Each contaminant or stressor has specific sources, transport, exposure mechanisms, and biochemistry; and each can impact health both directly and indirectly. Of particular concern are airborne sulphur and nitrogen oxides, hazardous volatile organic compounds, hydrogen sulphide, ozone, noise, and radiation; as well as soil- or water-borne hydrocarbons, heavy metals, and radiation — some of which can also impact human health through food pathways. It has been determined that UOG is negatively impacting human health in NEBC; however, further information, such as environmental monitoring, is required before the actual health risks and impacts posed by UOG can be quantified.
    Environmental Reviews 06/2012; 20(2):122-134. DOI:10.1139/a2012-005 · 2.36 Impact Factor