Article

Multiple sclerosis - remyelination failure as a cause of disease progression.

Institute of Neuropathology, University Hospital Münster, Münster, Germany.
Histology and histopathology (Impact Factor: 2.24). 03/2012; 27(3):277-87.
Source: PubMed

ABSTRACT Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system (CNS) that affects worldwide about 2.5 million people. The morphological correlates of the disease are multiple lesions in brain and spinal cord which are characterized by demyelination, inflammation, gliosis and axonal damage. The underlying cause for the permanent neurological deficits in MS patients is axonal loss. Demyelinated axons are prone to damage due to the lack of trophic support by myelin sheaths and oligodendrocytes, as well as the increased vulnerability to immune mediated attacks. Remyelination occurs, but especially in chronic lesions is frequently limited to a small rim at the lesion border. Current treatment strategies are based on anti-inflammatory or immunomodulatory drugs and have the potential to reduce the numbers of newly evolving lesions, although as yet no treatment strategy exists to influence or prevent the progressive disease phase. Therefore, the development of neuroprotective treatment options, such as the promotion of endogenous remyelination is an attractive strategy. A prerequisite for the development of such new treatments is the understanding of the mechanisms leading to remyelination and the reasons for insufficient endogenous repair in chronic MS. This review will therefore provide an overview of the current concepts regarding remyelination in the rodent and human CNS. We will also summarize a selected number of inhibitory pathways and non-disease related factors which may contribute to remyelination failure in chronic MS.

4 Followers
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laquinimod is a novel oral immunomodulatory drug for the treatment of multiple sclerosis (MS). Considering the frequent co-morbidity of MS with anxiety and depression, we sought to assess the antidepressant and anxiolytic effects of laquinimod in mouse models. Laquinimod (0.5-25 mg/kg), fluoxetine (10 mg/kg) or vehicle were administered for 4-14 days to adult Balb/c mice, followed by behavioral tests and brain BDNF analysis. Following a 4-day administration of laquinimod (5 and 25 mg/kg), an increase in motivated behavior was observed in the forced swim test (p < 0.01 vs. controls). In the open field test, laquinimod (0.5-5 mg/kg), but not fluoxetine, significantly increased motility (p < 0.05), whereas both decreased anxiety behavior (p < 0.01), evident only for laquinimod (5 mg/kg) in the elevated plus maze (p < 0.05). Following 7 days of administration, both drugs decreased anxiety behavior in the elevated plus maze and marble burying tests (p < 0.001 and p < 0.02, respectively). After 14 days, only laquinimod (5 mg/kg) demonstrated anxiolytic efficacy in the open field test (p < 0.05), with evidence of increased BDNF in response to 5-25 mg/kg in the hippocampus, but not frontal cortex (p < 0.05). In conclusion, laquinimod may possess anxiolytic and antidepressant effects, possibly associated with hippocampal BDNF increase, offering promise for MS patients suffering from psychiatric co-morbidity.
    Journal of Molecular Neuroscience 07/2014; 55(2). DOI:10.1007/s12031-014-0387-3 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laquinimod is a novel oral immunomodulatory drug for the treatment of multiple sclerosis (MS). Considering the frequent co-morbidity of MS with anxiety and depression, we sought to assess the antidepressant and anxiolytic effects of laquinimod in mouse models. Laquinimod (0.5-25 mg/kg), fluoxetine (10 mg/kg) or vehicle were administered for 4-14 days to adult Balb/c mice, followed by behavioral tests and brain BDNF analysis. Following a 4-day administration of laquinimod (5 and 25 mg/kg), an increase in motivated behavior was observed in the forced swim test (p < 0.01 vs. controls). In the open field test, laquinimod (0.5-5 mg/kg), but not fluoxetine, significantly increased motility (p < 0.05), whereas both decreased anxiety behavior (p < 0.01), evident only for laquinimod (5 mg/kg) in the elevated plus maze (p < 0.05). Following 7 days of administration, both drugs decreased anxiety behavior in the elevated plus maze and marble burying tests (p < 0.001 and p < 0.02, respectively). After 14 days, only laquinimod (5 mg/kg) demonstrated anxiolytic efficacy in the open field test (p < 0.05), with evidence of increased BDNF in response to 5-25 mg/kg in the hippocampus, but not frontal cortex (p < 0.05). In conclusion, laquinimod may possess anxiolytic and antidepressant effects, possibly associated with hippocampal BDNF increase, offering promise for MS patients suffering from psychiatric co-morbidity.
    Journal of Molecular Neuroscience 07/2014; Epub ahead of print. · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.
    Frontiers in Cellular Neuroscience 03/2014; 8:73. DOI:10.3389/fncel.2014.00073 · 4.18 Impact Factor