Determination of caprolactam and 6-aminocaproic acid in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry

Division of Clinical Toxicology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (Impact Factor: 2.73). 02/2012; 885-886:61-5. DOI: 10.1016/j.jchromb.2011.12.014
Source: PubMed


A simple and rapid assay based on hydrophilic interaction liquid chromatography with tandem mass spectrometry has been first developed and validated for simultaneous determination of caprolactam (CA) and 6-aminocaproic acid (6-ANCA) in human urine using 8-aminocaprylic acid as internal standard. A 20μL aliquot of urine was injected directly into the liquid chromatography tandem mass spectrometry (LC-MS-MS) system. The analytes were separated on a Phenomenex Luna HILIC column with gradient elution. Detection was performed on Triple Quadrupole LC-MS in positive ions multiple reaction monitoring mode using electrospray ionization. The calibration curves were linear (r(2)≥0.995) over the concentration range from 62.5 to 1250ng/mL for CA and 31.25 to 1000ng/mL for 6-ANCA. The detection limits of CA and 6-ANCA were 62.5 and 15.6ng/mL, respectively. The intra-day and inter-day precisions were within 8.7% and 9.9%, respectively. The intra-day and inter-day accuracy were between 5.3% and 3.5%, and between 6.1% and 6.6%, respectively. The method proved to be simple and time efficient, and was successfully applied to evaluate the kinetics of caprolactam in one unusual case of caprolactam poisoning.

20 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retention properties of a silica gel column and a type C silica (silicon hydride) column for bases, sugars and polar acids were compared in hydrophilic interaction chromatography (HILIC) mode with formic acid or ammonium acetate as aqueous phase modifiers. The type C silica column was much more retentive for a series of model bases than the silica gel column and, surprisingly, retention of bases increased on the type C silica column when, the higher pH, ammonium acetate containing mobile phase was used. The retention of sugars was greater on the type C silica column than on the silica gel column and also increased on the type C silica column with increased pH suggesting either a silanophilic mechanism of retention or some unknown mechanism. Three type C silica based columns, type C silica, cogent diamond hydride and a β-pinene modified column, which it was hoped might exert some additional stereochemical discrimination, were tested for metabolomic profiling of urine. In general the unmodified type C silica column gave the strongest retention of the many polar metabolites in urine and could provide a useful complement to established HILIC methods for metabolomic profiling.
    Journal of Chromatography A 09/2012; 1263:61-7. DOI:10.1016/j.chroma.2012.09.005 · 4.17 Impact Factor